
THE UNIVERSITY OF CHICAGO

A RESOURCE MANAGEMENT MODEL FOR VM-BASED VIRTUAL
WORKSPACES

A PAPER SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF
MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY
BORJA SOTOMAYOR BASILIO

CHICAGO, ILLINOIS
FEBRUARY 23, 2007

ABSTRACT

Virtual workspaces provide an abstraction for dynamically deployable execution envi-
ronments on a Grid. For this abstraction to be effective, it must be possible to provide
on-demand software environments and enforceable fine–grained resource allocations
for these workspaces. Virtual machines are a promising vehicle to realize the virtual
workspace abstraction, as they allow us to instantiate a precisely defined virtual re-
source, configured with desired software configuration and hardware properties, on a
set of physical resources.

In this paper, we describe a model of virtual machine provisioning in a Grid
environment that allows us to define such virtual resources and instantiate them on
a physical Grid infrastructure. Our model focuses, firstly, on providing users with
an accurate representation of virtual resources. To accomplish this, the overhead
resulting from instantiating and managing virtual resources is scheduled at the same
level as virtual resources, instead of being deducted from a user’s resource allocation.
Secondly, our model also focuses on efficiently managing virtual resources by reducing
the amount of overhead.

We argue that this model, compared to resource management models that rely
on the job abstraction for remote execution, enables resource providers to accurately
provision resources to users, while using their physical resources efficiently. We show
experimental results that demonstrate the benefits of this model both from the re-
source provider’s and the user’s perspective, in two common resource management
scenarios for virtual workspaces: advance reservations and batch–style submissions.

ii

ACKNOWLEDGMENTS

This work was supported by NSF CSR award #527448 and in part, by the
Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Research, SciDAC
Program, Office of Science, U.S. Department of Energy, under Contract
W-31-109-ENG-38

On the road to finishing this paper, I was aided by several people who provided
invaluable feedback, orientation, and support. I would like to extend my gratitude
to. . .

. . . my advisor, Prof. Ian Foster, for his guidance in the maze that is graduate
research, his insightful comments, and for his pioneering work in the field of
Grid Computing.

. . . my ‘shadow advisor’, Dr. Kate Keahey, who first got me excited about the
endless possibilities that lie in the intersection of Grid computing and virtu-
alization, for working closely with me day after day and teaching me what it
means to be a researcher, and for all her patience and understanding.

. . . Prof. Anne Rogers, the third member of the Axis of Academia that is my
committee, for the exceptionally detailed feedback she provided every single
step of the way.

. . . Tim Freeman, for all the interesting conversations on Grid Computing and
virtualization.

. . . Adam, Andy, John (Buzz), Matt, Mike, Peter, and other fellow PhD students
in the Department of Computer Science with whom I am fortunate to share the
trials and tribulations of grad school.

. . . Lisa Childers, for being a confidante with whom I could vent steam (and,
also, for her awesomeness).

. . . everyone in the Globus Pub, for all the whuggles and all the family muds.

. . . Al, for being there for me.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . v

LIST OF TABLES . vi

1 INTRODUCTION . 1

2 BACKGROUND: VIRTUAL WORKSPACES 3
2.1 VM–based Virtual Workspaces . 4
2.2 Representation of VM–based Virtual Workspaces 5
2.3 GT4 Workspace Service . 7

3 RESOURCE MANAGEMENT SCENARIOS 9

4 PROBLEM AND MOTIVATION . 13

5 MODELING VIRTUAL RESOURCES . 16

6 DESIGN . 20
6.1 Best-Effort and AR scheduling . 20
6.2 File staging strategies . 24
6.3 Reusing VM images . 26

6.3.1 Avoiding redundant transfers 27

7 IMPLEMENTATION . 30

8 EXPERIMENTS . 31
8.1 Accuracy of AR deployments . 32
8.2 Efficiency in Best–effort deployments 36
8.3 Mixing Best–effort and AR workloads 40

8.3.1 Performance with predeployed VM images 42
8.3.2 Performance when VM images must be transferred 44

9 RELATED WORK . 50

10 CONCLUSIONS AND FUTURE WORK 52
10.1 Future work . 53

REFERENCES . 55

iv

LIST OF FIGURES

2.1 Virtual Workspace Representation . 5
2.2 Virtual Workspace Service . 7

3.1 Availability scenarios . 11

5.1 Resource Slot and Virtual Resource 17
5.2 Virtual Resources and Overhead: (a) without considering overhead

separately, and (b) considering overhead separately 18

6.1 Top: Draining nodes before an AR. Middle: Backfilling the time before
an AR. Bottom: Suspending before an AR, and resuming after the AR. 23

6.2 EDF and EDF/JIT file staging strategies 26
6.3 Avoiding redundant transfers . 28

8.1 Nave file staging strategies . 33
8.2 Client Satisfaction (Trace I) . 35
8.3 Client Satisfaction (Trace II) . 35
8.4 Disk usage with EDF and EDF/JIT 37
8.5 VW Submissions (Traces III and IV) 38
8.6 MB Deployed (Trace III) . 39
8.7 MB Deployed (Trace IV) . 39

v

LIST OF TABLES

4.1 Running times for trace with few long batch jobs and resource-hungry
ARs (75% Batch, 25% AR). 14

4.2 Running times for trace with many short batch jobs and resource-
hungry ARs (75% Batch, 25% AR). 15

8.1 Traces used in experiments . 34
8.2 Distribution of images in traces III, IV 38
8.3 Effect of virtualization (assuming predeployed images) on time to com-

plete best–effort requests . 43
8.4 Effect of virtualization (assuming predeployed images) on utilization . 45
8.5 Effect of image prefetching and reuse on time to complete best–effort

requests (compared with image predeployment) 46
8.6 Effect of image prefetching and reuse on utilization (compared with

image predeployment) . 48
8.7 Effect of image prefetching and reuse on time to complete best–effort

requests (compared with no virtualization) 49

vi

SECTION 1
INTRODUCTION

Currently, execution management on Grid systems [10] is commonly performed through
the use of the job abstraction, where users submit an executable file furnished with
metadata, such as a list of computational resources required by the job, to a resource
provider that, in turn, will schedule the job according to local policies. In most
grid deployments today, users only have limited control over the resource platform
on which computations are performed. In particular, two types of control are often
lacking:

Availability and quantity of resources: Users are limited to requesting coarse-
grained resource allocations, such as number of CPUs, disk space, and memory.
Finer-grained allocations, such as percentage of a CPU, disk read/write speeds,
and network bandwidth cannot be specified. In terms of availability, assuming
no advance reservation capabilities, users have no control over the starting and
ending time of their jobs, which will depend instead on local scheduling policies.

Software environment: Users are limited to the software environments available in
the resource providers, which might not provide all the necessary dependencies
(such as libraries) to run their jobs. Users may find that resource providers, who
have to meet the needs of diverse communities, are unable or unwilling to install
the software they need to run their jobs, limiting their choice of providers. Addi-
tionally, resource providers generally run jobs in a restricted execution environ-
ment, precluding the execution of any code requiring administrative privileges
for all or part of its work.

Although these limitations are acceptable for a wide variety of computations, they
can be a barrier for many others. Control over resource availability is particularly
important for deadline-sensitive applications, in which a resource needs to be made
available in response to a specific event, such as data becoming available from a sen-
sor, a class starting at a specific time, and input from a human client. Although
such control can be provided via reservation mechanisms, these mechanisms are not
popular amongst resource providers because of their negative impact on resource uti-
lization, as shown for parallel job reservations in Fallenbeck et al.[5]. The lack of
control over software configuration can be a barrier to the use of remote resources,
specially for applications with complex software requirement such as the STAR appli-
cation discussed by Freeman and Keahey [13], and providing more control over this
aspect could increase demand for remote computing resources.

With these requirements in mind, Keahey et al. [17] defined virtual workspaces
(VWs), a construct that allows clients to negotiate the creation of a virtual com-
puting resource with a specified software environment and resource allocation. The
workspace interface allows a remote client to negotiate and manage a virtual resource

1

2

allocation securely using Web Services-based protocols for state access and manage-
ment [9]. Virtual machines (VMs), such as Xen [3] and VMware [37], with their
isolation and virtualization properties, provide a particularly promising platform for
workspaces.

In this paper, we present and evaluate a resource management model for virtual
workspaces designed to enable accurate and efficient creation of VM-based virtual
workspaces. We constraint most of our discussion of resource management to the
resource dimension of time or availability, leaving more exhaustive investigations of
other dimensions (such as memory, CPU, network bandwidth, etc.) to future work.
Thus, we understand accuracy to mean that a request to create a virtual workspace
at a particular time t (either immediately, or in the future) is satisfied at that time
t, not later. By efficient, we mean that the overheads incurred by the server(s) that
process requests for virtual workspace creation are low. As we shall see, accuracy and
efficiency are greatly affected by the size of virtual machine images required to run
virtual workspaces, which can be large.

We describe the design and implementation of a virtual machine scheduling system
based on our resource management model. This system schedules virtual workspaces
using a combination of existing techniques and new techniques that are introduced
in this paper. In particular, our system depends on the use of VM image templates
and the ability of virtual machines to suspend/resume an entire machine, and intro-
duces mechanisms for scheduling VM image transfers and reusing VM images across
deployments.

We present real and simulated experimental results that use the resource manage-
ment techniques presented in this paper to schedule virtual workspaces. These results
show that, by annotating virtual machine images with descriptive metadata, a sched-
uler will be capable of better managing the overhead of creating a virtual workspace,
resulting in improved accuracy of deadline–sensitive deployments. Furthermore, our
experiments show that, by using our image prefetching and reuse techniques, greater
efficiency can be achieved, reducing the time required to process requests on a best–
effort basis. Our experiments will also explore workloads that combine deadline–
sensitive and best–effort requests, and how resource management mechanisms that
are part of most virtual machine systems can improve utilization of physical resources
in these mixed workloads.

The rest of this paper is structured as follows. We begin, in Section 2, by provid-
ing some background on Virtual Workspaces. Next, Section 3 presents the resource
management scenarios that motivate our virtual workspaces work, followed by a de-
scription, in Section 4, of the specific problem we address in this work. Section 5
explains our virtual resource model, Sections 6 and 7 describe the design and im-
plementation, respectively, of our VW scheduling system, and Section 8 presents
our experimental results. Finally, Section 9 discusses related work, and Section 10
presents our conclusions and future work.

SECTION 2
BACKGROUND: VIRTUAL WORKSPACES

In Section 1, we introduced the concept of virtual workspaces. In this section we
provide a more in–depth description of the term virtual workspace, a discussion of why
virtual machines are a promising vehicle for virtual workspaces, and approaches to
implementing workspaces, including the Globus Toolkit 4 [11, 29] Workspace Service,
on which we build upon in our work.

Virtual workspaces were first introduced by Keahey et al.[17] as an abstraction for
execution environments that can be deployed on a grid. This construct does not arise
as a replacement for other execution management approaches, such as the widespread
job abstraction. Rather, it is a more general abstraction adequate for use cases
requiring dynamic and secure deployment of execution environments (see Section 3).
This deployment can be dynamic if the user needs the execution environment to be
created and destroyed on–demand, and it must be secure because both the software
environment contained in the workspace and the user creating/managing/accessing
the workspace must be trustworthy.

The two distinguishing aspects of virtual workspaces are:

Environment definition or Quality of Life: Workspaces provide an execution en-
vironment meeting all the software requirements of a user.

Resource allocation or Quality of Service: All the resources the workspace needs to
function correctly (CPU, memory, disk, bandwidth) must be provisioned and
guaranteed during an agreed–upon availability period, allowing for dynamic
renegotiation to reflect changing requirements and conditions.

The idea of on–demand creation and management of execution environments is
not a new one, and there are multiple approaches to this problem, such as cluster
node imaging (e.g. Cluster–on–Demand [28]), configuration management (e.g. bcfg2
[27]), or package management (e.g. Pacman [31]). However, these approaches are
not adequate for the stated goals. From the quality of life perspective, cluster node
imaging and configuration management limit the software environments the user can
choose. From the quality of service perspective, deploying hard drive images to cluster
nodes requires a preparation time during which those nodes will be unavailable, and
package management takes a long time to install and configure all necessary packages
to create a software environment. Switching between different software environments
frequently is, therefore, not cost–effective since resources cannot be used for computa-
tion while a new environment is being set up. Furthermore, none of these approaches
support enforceable fine–grained resource allocation.

3

4

2.1 VM–based Virtual Workspaces

The use of virtualization technologies [25] holds great potential for Grid Computing.
Figueiredo et al.[8] outlined several general advantages of using virtual machines in
the context of Grid Computing. We are interested, in particular, in the following:

Security and isolation: Virtualization isolates the actions performed in one VM
from other VMs running in the same physical machine. Thus, VMs add an
extra layer that must be broken by malicious grid users before the performance
of co–allocated VMs can be affected, and before physical resource integrity can
be compromised. Furthermore, users can be granted administrator privileges
inside a virtual machine, since any malicious activity will be confined to the
virtual machine, and will not affect the underlying physical machine 1.

Customization of execution environment: Virtual machines can be customized
with specific software and hardware requirements, without restarting physical
nodes. Switching from one execution environment only requires starting a new
virtual machine with the desired software environment, already preconfigured
inside the virtual machine, instead of setting up a new environment from scratch,
potentially removing the previous environment. This makes frequent switching
between multiple execution environments a cost–effective option, requiring min-
utes instead of hours.

Resource control: Virtual machines enable enforceable fine–grained resource allo-
cations that can be specified when creating the virtual machine, but also mod-
ified during the virtual machine’s runtime. The resource enforcement mecha-
nisms of virtual machines allow administrators to limit the impact of a VM’s
resource consumption on other co–allocated virtual machines, and also enables
fine–grained accounting of resource usage.

Site-independence: Virtual machines are very loosely coupled to physical hosts,
only requiring that a host have an adequate virtual machine monitor and suf-
ficient resources to support its execution. This enables virtual machines to be
instantiated in different sites, imposing fewer constraints on the physical config-
uration of the site. Furthermore, virtual machines can be seamlessly migrated
from one site to another.

Quality of life and service in virtual workspaces can be enhanced by leveraging
these advantages. Security, isolation, and resource control positively affect quality of

1. Granting administrator privileges can still enable malicious users to initiate attacks that require
“root” access (such as a denial–of–service attack by flooding the network with packages, something
which a non-privileged user user cannot do). Granting administrator privileges inside a virtual
machine is, nonetheless, preferable to granting them on a physical machine, as system administrators
can easily shut down malicious virtual machines without affecting any co–allocated virtual machines.

5

Figure 2.1: Virtual Workspace Representation

service by guaranteeing that workspaces have enough resources (CPU, memory, etc.)
to support their execution, while being isolated from the resource usage of other co–
located workspaces. Site–independence can improve quality of service by increasing
the pool of physical resources where a workspace can run, and enabling cross–domain
load balancing of workspaces. Customization, legacy support, and administrator
privileges provide the users with quality of life, by decoupling them from the software
environment provided by a resource provider and enabling them to specify custom
software environments inside a virtual machine.

Virtual machine (VM) technologies are, thus, a promising vehicle for achiev-
ing high quality of life and service in virtual workspaces. In a VM–based virtual
workspace, the software environment required by the user would be encapsulated
inside a virtual machine, and resource allocations would be enforced by a virtual
machine manager.

2.2 Representation of VM–based Virtual Workspaces

A VM–based virtual workspace is composed of two elements [17], summarized in
Figure 2.1, the VM image and the workspace metadata.

In a VM-based virtual workspace deployment, one or more virtual machines will
be run. To instantiate a virtual machine, we need a disk image with a runnable
operating system and all the software required by the user. A VM image is composed
of one or more disk images, representing the different disk partitions required by the
virtual machines. Users could potentially provide their own VM images, or choose
from a set of preexisting images made available by a resource provider.

Deployment–independent configuration information is factored out of the VM im-

6

age and into an XML metadata file. This approach allows workspaces to be described
in terms of VM image templates, generic reusable VM images with the system soft-
ware and tools for some specific purpose (e.g. a worker node for an Open Science
Grid cluster), but lacking all the configuration information specific to a particular
type of deployment. This information, contained in the metadata file, is bound to the
VM image at runtime to produce an image instance.

To illustrate the concept of image templates and why information in the metadata
file is deployment–independent we present the following example:

1. A user wishes to deploy a virtual workspace representing an Open Science Grid
(OSG) cluster with 100 worker nodes (for the purposes of this example, we will
ignore the head node and focus only on the worker nodes). We assume that
worker nodes differ only in their network configuration, and that the user wants
to specify a single private IP address for each worker node manually (and not
rely on other mechanisms, such as DHCP). Since each worker node will have a
different network configuration, the user could prepare 100 worker node images,
W1 . . . W100, that differ only in their network configuration. By using image
templates and metadata files, the user only needs to provide a single VM image
W and a metadata file mf containing the network configuration of each of the
worker nodes (conf1 . . . conf100).

2. When the virtual workspace is deployed, multiple copies of the image template
are made, and each is bound to the configuration contained in the metadata
file to produce runnable image instances (e.g. W (conf42) = W42). Note that
the image template is reusable, since a single copy of an image template can be
used to yield multiple image instances.

3. Metadata file mf can be reused for future deployments of a 100–node OSG
cluster. In this sense, the configuration information contained in the metadata
file is deployment–independent.

4. In the future, the user wishes to deploy a 150–node cluster, using the same VM
image W . Metadata file mf cannot be used as it only includes configuration for
100 nodes. To deploy the new workspace, the user must create a new metadata
file, mf ′, with configuration information for all the nodes (conf1 . . . conf150).
Similarly, if the user wishes to deploy the 100–node cluster but using network
addresses different from the ones specified in mf , a new metadata file would
also be required. Therefore, we consider that any configuration information that
need not change across deployments is deployment–independent. Furthermore,
this example also shows how an image template can be reused not just in a single
deployment (by using it to create multiple image instances) but across deploy-
ments, since all potentially mutable information is contained in the metadata
file, not in the VM image.

7

Figure 2.2: Virtual Workspace Service

In Section 6 we will explore optimizations that result from the reusability of image
templates.

Finally, when a virtual workspace is deployed, we must also specify a deployment
request (also shown in Figure 2.1). This request is an XML document describing the
resource allocation required by the workspace, including both availability and hard-
ware requirements (such as memory and CPU%). This information is deployment–
dependent, since resource allocation requirements generally vary across deployments
(e.g., the user might be interested in performing CPU–intensive work in one deploy-
ment, and I/O–intensive work in another), and also during a deployment (to adapt
to changing requirements and conditions).

2.3 GT4 Workspace Service

The GT4 Virtual Workspace Service [30], or VWS, which we extend in this work, al-
lows authorized users to request the creation of VM–based virtual workspaces through
a Web Services interface. This interface also allows users to monitor and control the
virtual workspace. As of this writing, the VWS only supports single–node virtual
workspaces and immediate reservations without the possibility of queueing or pre-
emption (i.e. requests for which resources cannot be provisioned immediately are
rejected). Virtual machines are instantiated using the Xen Virtual Machine Monitor

8

[3], although others (such as VMWare [37]) could potentially be used.
Figure 2.2 shows the typical setup required by the VWS in the resource provider:

• A publicly accessible node, the VWS node, hosts the Web Service frontend of
the VWS.

• A set of nodes, the node pool are put under the control of the VWS. Virtual
workspaces will be deployed on these nodes.

• Each node in the node pool must have a virtual machine manager installed,
along with the workspace backend, a script that manages individual nodes and
is invoked by the VWS when tasks need to be performed on nodes (such as
starting and stopping virtual machines.

• A separate node, the image node acts as a repository for VM images. When a
virtual workspace is deployed on the node pool, VM images are staged to the
nodes from the image node.

In a typical interaction with the VWS, the following steps would take place:

1. A user wishes to deploy a virtual workspace. To do so, the user provides the
location of the VM image (in either the image node or a third–party site), the
workspace metadata, and the deployment request (as described in the previous
section).

2. The VWS determines if there are enough resources immediately available to
satisfy the request. If not, the request is rejected. Otherwise, the VWS initiates
a transfer of the VM image to the nodes where that VM image will be used.

3. Once the image transfer is completed, the VWS uses the workspace backend to
start the virtual machines for the requested workspace.

4. Information about the workspace, such as its status, the IP addresses assigned
to the virtual machines, etc. are published through the Web Services interface,
using WSRF Resource Properties.

5. Users can query these Resource Properties, and interact with their workspaces
in the same way they would with a physical machine.

6. Users can also use the Web Services interface to control their workspaces (e.g.
to stop them when they are done with their work)

SECTION 3
RESOURCE MANAGEMENT SCENARIOS

Our work is motivated by a variety of use cases with quality of life and service re-
quirements that can be met by virtual workspaces. For example:

Virtual labs: A university wishes to teach a course on Parallel Programming, but
lacks a cluster on which students can run their exercises, labs, etc. Even with a
cluster in the university, the cluster administrator is unlikely to grant students
complete control of the cluster during class hours. A virtual workspace can be
created dynamically during the times when the course’s labs are in session,
providing students with an execution environment where they can do their
exercises.

Event-driven applications: Applications requiring large amounts of computational
resources when an event arrives (such as data arriving from an experiment) or
emergency applications, such as flood modeling, require systems that can pro-
vision resources immediately, preempting any other work taking place on the
computational resources. VM–based virtual workspaces could be used to meet
the quality of service requirements of event–driven applications, thanks to their
ability to reshape resource allocations dynamically and suspend and resume
computations seamlessly.

Batch jobs with strict software requirements: Users who need to run batch–
style jobs, but require very specific software environments (e.g., legacy environ-
ments) that system administrators may not be willing to provide as they have
to take into account the software needs of all their users. Virtual workspaces
can provide users with exactly the software environment they need to run their
jobs.

Our goal is to arrive at a resource management model that meets the requirements
of the above use cases. In particular, we concern ourselves here with availability. Free-
man et al. [14] explored the protocols and enforcement methods along other resource
dimensions, such as CPU and network bandwidth, highlighting the interdependencies
that can arise between different resource dimensions. We leave a more exhaustive
discussion of multi–dimensional resource management for future work.

Before discussing the different availability scenarios that arise in these use cases,
and which will be the object or our investigations, we present the following definitions:

Agreement: We adopt the definition provided in the WS-Agreement specification [2]:
“An agreement defines a dynamically–established and dynamically–managed re-
lationship between parties. The object of this relationship is the delivery of a
service by one of the parties within the context of the agreement. The man-
agement of this delivery is achieved by agreeing on the respective roles, rights

9

10

and obligations of the parties. The agreement may specify not only functional
properties for identification or creation of the service, but also non-functional
properties of the service such as performance or availability. [. . .].” In the
context of our work, the two parties involved are a resource provider and a re-
source consumer (which we will refer to simply as the user). The service to be
provided is access to computational resources, and we focus on satisfying the
availability requirements specified by the user.

Availability period: A period period of time during which the resources requested
by the user are guaranteed to be accessible. The start and end of this period
is determined by a start and end event, both defined as part of the agreement,
and which will only be observed while the agreement is valid.

Agreement establishment time: Precise instant in time in which a user estab-
lishes an agreement with the resource provider. The period during which the
agreement is valid need not start at this time (e.g., an agreement for future use
of resources)

Event: An occurrence that affects availability. Events can be received and processed
automatically by a local resource manager, without any human intervention
on the resource provider’s side. They can arrive at any time, but are only
guaranteed to be processed while the agreement is valid. Examples of events
include:

• User request : The user explicitly requests the start or termination of the
availability period.

• Asynchronous events : The user defines an asynchronous event, such as
arrival of data from an experiment, that must trigger the start of the avail-
ability period (e.g., because we need computational resources to analyze
the data arriving from the experiment).

• Timer events : Events ocurring at a specific time as a consequence of a
timer managed by a resource manager, such as timers that send a signal at
the beginning or end of an availability period. A scheduler will typically
determine these times based on local policies, or on pre–agreed times.

Depending on how strictly availability is defined, we encounter different availabil-
ity scenarios that can be described with terms such as ‘advance reservations’, ‘batch
submissions’, ‘best–effort scheduling’, etc. Since these terms tend to be highly over-
loaded, throughout this text we will observe the following definitions (summarized in
Figure 3.1):

Closed Advance Reservation : Availability in this case is clearly defined in ad-
vance with pre–agreed start and end timestamps that coincide with the start

11

Figure 3.1: Availability scenarios

12

and end of the agreement. Virtual workspaces for the Virtual Labs use case, for
example, will have specific start and end times (e.g. a lab that is taught from
2pm to 4pm).

Open Advance Reservation : In event–driven applications, availability require-
ments are loosely defined, since the user can only specify the availability period
in terms of asynchronous events (and, possibly, also a window of time during
which those events are likely to arrive). However, when that event is received,
availability must be guaranteed at exactly that time, and for the duration spec-
ified. Thus, this availability scenario is an advance reservation insofar as the
resource requirements are known in advance, meaning the scheduler can take
steps to provision resources preemptively in case the start event arrives, but
the exact start and end times are not. The Urgent Computing use case is an
example of Open AR.

Best–effort Reservation : Similarly to Open AR, this availability scenario presents
loosely defined availability requirements. The user agrees to have availability
defined by the resource manager, which will provision resources on a best–effort
basis, taking into account local policies regarding priorities and quotas, and
queueing requests if necessary. Batch jobs are an example of this availability
scenario.

Immediate Reservation : In this case, availability requirements are not known
until the time the resource request arrives and, once it arrives, resources must
be provisioned immediately. Unlike Open AR, the resource manager would have
no way of preemptively provisioning resources for this kind of requests, and a
request is rejected if resources cannot be provisioned immediately. This scenario
is, arguably, just a special case of Closed AR, where the interval between the
agreement establishment time and the start time is zero.

In this paper we focus on Closed Advance Reservations.1 We also touch upon
Best–effort Reservations and, in particular, on how to schedule workloads presenting
both advance reservations and best–effort reservations adequately.

1. Unless otherwise noted, when we refer to an advance reservation, or an AR, we refer to a
Closed Advance Reservation

SECTION 4
PROBLEM AND MOTIVATION

As described in the previous sections, VM–based virtual workspaces provide several
features resulting in better quality of service and life. However, dynamically deploy-
ing virtual machines involves a cost. Most notably, potentially large VM images have
to be deployed before we can start a virtual workspace, and running inside a VM
will not be as fast as running directly on physical hardware. On the other hand,
VMs provide several resource management mechanisms, such as the ability to seam-
lessly suspend/resume and live–migrate VMs, which can result in better utilization
of resources.

In this section we advance some of our experimental results to explain what prob-
lems we are addressing in this work. (from Section 8). In particular, we are interested
in observing what happens when we try to schedule virtual workspaces as jobs, with-
out making any attempt to manage the overhead of using VMs and without leveraging
techniques like suspend/resume or live migration.

First of all, we consider an artificially–generated trace of requests with the follow-
ing characteristics:

• The duration of the trace is 10 hours. The workload is such that it is possible
to complete all the work if we achieve 100% utilization of resources.

• 75% of the total time required by all the requests is devoted to serial batch
requests. The remaining 25% is used by advance reservations.

• The serial batch requests have an average duration of 15 minutes.

• The advance reservations request between 75% and 100% of available processors.

• The VM images have a size of 600MB.

• The total number of VMs that will run during the trace is 830. In consequence,
830 VM image transfers will have to be performed during the experiment.

• Besides the overhead of transferring a VM image before a VM can start, we
assume that running inside a VM results in a 10% slowdown 1(e.g., a 10 minute
job would take 11 minutes to run inside a VM).

This trace is processed by a scheduler using a simulated backend of eight nodes
with two CPUs each, connected by a 100Mbps switched network. This simulator is

1. 10% is, in practice, a reasonable upper bound on the slowdown introduced by paravirtualized
VMMs like Xen. This is supported by experiments in Barham et al. [3] and Clark et al. [4],
where slowdown does not generally exceed 10% (and is considerably smaller in certain cases, like
CPU–intensive applications).

13

14

Table 4.1: Running times for trace with few long batch jobs and resource-hungry ARs
(75% Batch, 25% AR).

Configuration Time (s) Slowdown

Without VMs 45, 780 —
With VMs (predeploy) 48, 240 +5.07%

With VMs (no predeploy) 52, 020 +13.63%

described in more detail in Section 6. More details on the experimental setup will be
provided in Section 8.

We run this trace in three configurations:

Without VMs: We do not use VMs to run the jobs. Therefore, there is no runtime
overhead and no VM images to deploy before the images run.

With VMs (predeploy): We use VMs to run the jobs, which results in a slowdown
caused by running inside a VM. However, we assume that all necessary VMs
are predeployed in the nodes where they are needed.

With VMs (no predeploy): Same as the previous configuration, but removing the
assumption that all images are predeployed.

In all configurations, we use backfilling (see Section 6.1) to improve utilization
before an advance reservation.

Table 4.1 shows the time required to complete all the serial batch requests, and
the slowdown compared to the non–virtualized configuration. We can observe that
both virtualized configurations present a slowdown. In the predeployment case, this
slowdown is arguably an acceptable one.

However, the trace requires the deployment of 830 600MB VM images (a total
of 498GB). Since the trace has a duration of ten hours, this means that we would
require, on average, a bandwidth of 13.8MB/s (830·600

10hours∗3600sec/hour
) to transfer all

the images within the ten hour period. Since a 100Mbps switched network has a
theoretical peak bandwidth of 12.5MB/s, the overhead of transferring the images will
have an impact on performance, albeit small, since we require only slightly more
bandwidth than is available.

In our next trace, we consider what happens when we have a large number of
images to stage. The trace has the same characteristics as the previous one, with the
following differences:

• The serial batch requests have an average duration of 5 minutes. To maintain
the proportion of 75% of serial batch requests (in terms of total duration re-
quested), the number of serial jobs is increased, which results in more images
to deploy.

15

Table 4.2: Running times for trace with many short batch jobs and resource-hungry
ARs (75% Batch, 25% AR).

Configuration Time (s) Slowdown

Without VMs 41, 040 —
With VMs (predeploy) 44, 640 +8.77%

With VMs (no predeploy) 87, 000 +111.99%

• The total number of VMs that will run during the trace is 1876, resulting in
1876 VM image transfers during the experiment.

In this case, we require an average bandwidth of 31.2MB/s to deploy all the images
in ten hours. Since this exceeds our available bandwidth, the overhead of deploying
the VM images will not allow us to complete all the requests in ten hours. Table 4.1
shows how, while the slowdown of using VMs with predeployed images is arguable an
acceptable one, it becomes excessive when we have to deploy the images, more than
doubling the time required to complete all the serial batch requests.

In Section 8 will provide a more exhaustive exploration of different trace param-
eters, but these two examples already show how using VMs, without any attempt to
manage the overhead of using those VMs adequately, we are faced with the problem
that this overhead can affect performance considerably. In this work, we present a
resource management model provides a solution to this problem by addressing the
following questions:

1. VMs provide us with resource management techniques such as suspend/resume
and live–migration. Can we use these techniques to increase utilization of phys-
ical resources? If so, what cases will benefit the most from them? Is this
improvement enough to compensate for the different overheads resulting from
using VMs?

2. These examples focus on the time to complete the serial batch jobs. However,
advance reservations can also be negatively affected by the overhead of deploying
images (e.g., an advance reservation might be infeasible if the required VM
image cannot be transfered on time). How can we guarantee the accuracy of
ARs, by making sure that VM images for ARs are available at the time when
the AR is set to start?

3. If predeployment of images is not acceptable, how can we improve efficiency
of VM deployments by reducing the overhead of transferring VM images, and
getting performance as close to what we achieve when images are predeployed?

SECTION 5
MODELING VIRTUAL RESOURCES

In this section, we present a resource management model that enables accurate and
efficient creation and management of virtual workspaces in some of the resource man-
agement scenarios described in Section 3, and which will allow us to tackle the prob-
lems described in the previous section.

Our model assumes a set of physical resources providing a set of resource slots
(e.g., all the physical memory is one resource slot, each CPU is another resource slot,
etc.). A quantum of a slot (e.g., 512 MB of memory, out of the 4 GB available) may
be bound to a virtual workspace to provide it with some hardware resources needed
to support the workspace’s activities for a well-defined period of time. We term such
a binding of a portion of a slot to a virtual workspace a virtual resource. All these
concepts are summarized in Figure 5.1

Existing local resource managers, geared towards managing the execution of jobs,
are not adequate for scheduling virtual resources because they would not take into
account the overhead involved in deploying and managing those virtual resources. In
particular, we encounter two types of overhead, which were alluded to in the previous
section: preparation and runtime. The former refers to the cost of preparing the
environment where the virtual workspace will run (most notably, deploying the VM
images required by that workspace), while the latter refers to the memory, CPU and
I/O overhead incurred by the VM hypervisor itself. Furthermore, these overheads
are not necessarily constant, and may depend on the size of the requested virtual
resources, the hypervisor used, and the quality of base resources.

Our model focuses on guaranteeing accuracy and maximizing efficiency.

— We define accuracy as a binary property: a virtual workspace is either deployed
accurately or not, without any gradients. Given a request to start a virtual
workspace at time ts for a duration d, with resources R, the deployment is
accurate if those conditions can be met. To accomplish this, we must account
for preparation and runtime overhead in such a way that a request is only
accepted if it can be guaranteed to be provisioned accurately since, otherwise,
we would violate the agreement with the user requesting the workspace. This
is distinct from the concept of fidelity used by Irwin et al.[16], defined as the
percentage of d where the user has access to the resources (allowing for the
actual starting time to be later than ts, since part of d could be consumed by
preparation overhead in Irwin et al.’s work). Our model is designed to provide
100% fidelity, rejecting any requests where this cannot be guaranteed.

— We define efficiency as a measure of how much we can reduce overhead, as
opposed to making no attempt to manage it. Efficient processing of requests
allows resources that would have otherwise been consumed by overhead to be
used to process more requests.

16

17

Figure 5.1: Resource Slot and Virtual Resource

For example, let us assume that memory and time (availability) are the only two
resources, and that a user requests 512MB of memory from 2pm to 4pm to support
the execution of a workspace. Figure 5.2(a) shows how the resources allocated to
the user would be diminished by two types of overhead: the preparation overhead of
transferring the (potentially large) workspace’s VM image to the physical node where
it will run, delaying the start time of the workspace, and the runtime overhead of the
virtual machine monitor.

Using existing local resource managers, even those with AR capabilities, affects
the accuracy of virtual workspace deployments, since they burden users with having
to factor in the different types of overhead into their resource requests. This task is
not easy because users cannot predict the time to stage the VM image accurately,
as they are unaware of the network traffic conditions on the site, and they have no
control over how much of the virtual machine monitor’s overhead will be deducted
from their allocation (e.g., if several VM’s are deployed on a single physical node, the
deduction might be shared).

Thus, we argue in favor of a virtual resource management model, where users get
exactly the resources they requested. Thus, our model allows portions of resource
slots to be bound either to virtual resources or to overhead. The virtual resource
accurately represents the resources requested by the user, and overhead is managed
separately, instead of being deducted from the user’s allocation. This separation
results in more work for the local scheduler, which must now schedule both the virtual
resource and the overhead, but results in increased accuracy and, as we will discuss in
the following sections, enables the scheduler to take steps towards reducing overhead
(increased efficiency).

For example, Figure 5.2(b) shows how a user’s request for 512MB of memory from
2pm to 4pm is processed accurately by (1) scheduling the preparation overhead of

18

(a)

(b)

Figure 5.2: Virtual Resources and Overhead: (a) without considering overhead sep-
arately, and (b) considering overhead separately

19

transferring the VM image (by prestaging it to the physical node before the sched-
uled start time of the virtual resource) and by (2) setting aside enough memory for
the runtime overhead of the virtual machine without deducting it from the virtual
resource.

Nonetheless, managing virtual resources and overhead involves challenges along
several dimensions:

Time (or availability): We must guarantee that resources are available at the agreed–
upon time, and must be able to reject requests that are deemed infeasible be-
cause it would not be possible to set up the required environment on time.

Memory : We must take into account that part of the memory in a physical node
must be assigned to the virtual machine monitor. This dimension is trivial,
since this memory usage is generally constant.

Networking : We must take into account that network bandwidth is shared by
all the VMs on a physical node and with preparation overhead (such as image
staging). Furthermore, network usage can affect CPU usage in the virtual
machine monitor.

Disk : Similarly to networking, disk I/O is shared by all VMs on a node and can
affect CPU usage in the virtual machine monitor. Furthermore, physical nodes
must have enough disk space to support the VM images of different workspaces

CPU : The CPU share required by the virtual machine monitor can vary over time,
depending on the resource usage of the VMs it is managing.

As mentioned in the introduction, we concern ourselves here with the resource
dimension of availability, which is primarily affected by preparation overhead. In
particular, workspace deployment can involve the (potentially expensive) transfer of
a VM image to a node, a task that requires I/O and network usage that must be
accounted for by the scheduler. However, we currently assume that VMs produce
no network activity that would share bandwidth with preparation overhead (i.e. the
Networking dimension does not affect the Time dimension).

The management of runtime overhead for the Xen virtual machine monitor was
explored previously by Freeman et al. [14], and we leave an investigation of multi–
dimensional scheduling of both preparation and runtime overhead for future work.

SECTION 6
DESIGN

In this section we describe the design of a virtual machine scheduling system that man-
ages virtual resources and preparation overhead separately, using scheduling strategies
designed to increase accuracy and efficiency. In particular, we will discuss (1) how
our scheduling system allocates resources for Best-effort and AR requests, (2) a set of
file staging strategies for VM image deployment, and (3) a strategy for reusing VM
images on physical nodes.

6.1 Best-Effort and AR scheduling

Our system supports scheduling of best–effort requests and closed advance reservation
requests (described in Section 3). For best–effort requests, we currently only support
serial requests, where the individual VMs in a workspace do not need to run in parallel
(this is similar to serial batch jobs). Advance reservations, on the other hand, always
request VMs in parallel: all the VMs in an advance reservation will begin at the same
time, and a request will be rejected if there are not enough resources for all the VMs
at the same time.

A best–effort request includes the following information:

— Number of VMs in the request. Since the requests will be serial–schedule, each
VM is scheduled separately.

— Resources required by the VMs. These resources are not specified for each
VM individually, and a value is provided for all VMs in the same request (e.g.,
a resource request for 512MB results in each VM requiring that amount of
memory). We currently support specifying the number of CPUs and amount of
memory required by each VM.

— Maximum duration of the VMs.

— VM image required. This information is specified by a URI pointing to the
image’s location in an image repository node.

Best–effort requests are scheduled using a FCFS (First Come First Serve) algo-
rithm. As requests arrive, they are placed on a queue. In turn, the head of the queue
is inspected every scheduling quantum, and if there are enough resources to run a
single VM at that time, the VM is scheduled for deployment and execution. Since
the VMs are serial–scheduled, this process does not involve any backfilling or resource
reservation strategies, except in the presence of advance reservations (a case which is
explained next).

An advance reservation includes the same information as a best–effort request,
plus a specific start time at which all the VMs in the request must start. The end

20

21

time of the reservation will be computed as start time + duration. To schedule
advance reservations, our scheduler models physical resources as resource slots (as
described in the previous section) where we must fit a given request for an advance
reservation. To perform this slot–fitting, we first determine if the request it feasible
at the requested start and end times and, if there is a choice of physical nodes, we
greedily choose the nodes that would minimize the number of image transfers. This
procedure is detailed in Algorithm 1

When combining best–effort requests and advance reservations, we can find that
the time before an advance reservation is underutilized, as we cannot schedule any
best-effort requests that would end after the scheduled start time of the advance
reservation (see Figure 6.1, top diagram). This problem is common in parallel job
scheduling, where resources can be allocated for a parallel job (requiring several CPUs
in parallel), but the resources available before the parallel job might not be able to
satisfy the requirements of the next job in the queue. Backfilling strategies [26, 6, 7]
allow lower–priority jobs to run in the time before a parallel job, without affecting
the starting times of higher priority jobs (see Figure 6.1, middle diagram).

In a batch scheduler, backfilling strategies differ on how they reserve resources
for parallel jobs in the queue. However, our system does not support parallel best–
effort requests (the equivalent of parallel jobs in batch schedulers), and we are only
interested in backfilling the time before an advance reservation (which cannot be
scheduled on a best–effort basis, like a parallel job) with best-effort serial requests.
In this case, the task of backfilling becomes much simpler, and is reduced to traversing
the queue in search of VMs that can be scheduled before the advance reservation.

However, as shown in Figure 6.1, backfilling can still result in some underutiliza-
tion. Another alternative is to suspend best–effort requests before an advance reserva-
tion, and resume them as soon as the advance reservation ends (see Figure 6.1, bottom
diagram). Suspend/resume is not a novel strategy, as many existing resource man-
agers, such as Condor and SGE, allow checkpointing of jobs. However, this feature
generally requires modifying a job’s executable to support checkpointing, although in
some cases checkpointing can be achieved by adding support for it to an OS kernel
[15].

As mentioned in Section 5, we currently assume that VMs do not produce any
network traffic that would share bandwidth with preparation overhead. In the case
of VMs running best–effort requests, we must also assume that these requests do not
require any network connections that are essential to completing the request, since
it might not be possible to continue these connections after resuming a suspended
VM (because of TCP timeouts). This assumption is reasonable in the case of highly
parallel applications, where each process is serial–scheduled and there is little or
no communication between the individual requests. It should be noted that this
restriction does not apply to ARs, since resources are guaranteed to be available
during the reservation (i.e., an AR will not be suspended).

22

Algorithm 1 Slot-fitting for advance reservations

Input: Request for n VMs, starting at time ts and ending at time te, each requiring
ri resources (for all i types of resources: CPU, memory, etc.)

physNodes[1 . . . m][1 . . . i] := {Array representing m physical nodes. Each physical
node has i types of resources}

candidateNodes := ∅
for all physnode in physNodes do

if physnode has at least ri resources from time ts to te (for all i resources) then
Add physnode to candidateNodes

end if
end for

{candidateNodes now contains all the physical nodes with enough resources to
deploy at least one VM}

Sort candidateNodes, giving priority to nodes where we will be able to reuse already
deployed VM images (see Section 6.3), and then to nodes where we can deploy more
than one VM.

for all vm in request do
Reserve ri resources in first available node in candidateNodes

end for

if there are no VMs left to fit then
{The reservation fits in candidateNodes}
if all necessary VM images can be deployed by ts (see Section 6.2) then

Commit changes to schedule
else

Reject
end if

else
Reject

end if

23

Figure 6.1: Top: Draining nodes before an AR. Middle: Backfilling the time before
an AR. Bottom: Suspending before an AR, and resuming after the AR.

24

6.2 File staging strategies

Jobs submitted to batch schedulers generally assume that the required files are avail-
able in the worker nodes (e.g., through an NFS drive) or that the input files will be
staged to the worker nodes when the job starts. As discussed in the previous section,
this assumption presents problems for deploying time-sensitive VWs, as VM images
can be large and costly to transfer, and transfer times can consume a significant por-
tion of the time allocated to the user. Thus, even if a resource is made available at a
requested time t, it may not be ready for use until a significantly later time t + d.

These problems can be solved in some cases by providing the scheduler with
application–specific information about what data needs to be transferred for each
deployment, enabling it to distinguish cases where prestaging the data before the
scheduled start time t would be appropriate. In the case of a virtual workspace, the
workspace metadata file can serve this purpose. In particular, the relevant information
is (1) an image descriptor (currently the location of the image file within an image
repository node), (2) the image size, and (3) the number of nodes in the VW.

As described in our virtual resource model, preparation overhead would be man-
aged separately from the virtual resources. Thus, we propose the use of a scheduled
file transfer strategy: after estimating the amount of preparation overhead, the image
transfers are scheduled to complete by time t, and the scheduler will reject workspaces
where such an image transfer cannot be scheduled (even if all other resources, such
as CPU and memory, are available during the requested period of time). In partic-
ular, for ARs we schedule image transfers using an Earliest Deadline First (EDF)
algorithm [21]. Using EDF allows us to guarantee that image transfers complete by
time t (the deadline), while also allowing us to determine which image transfers are
infeasible. Since EDF is an aggressive algorithm (image transfers begin as soon as
possible, even if the deadline is still far away), we also use a just–in–time variation
on EDF, which we term EDF/JIT, where image transfers are still sorted according
to their deadlines, but pushed as close as possible to the deadline. Figure 6.2 illus-
trates these two strategies, and Algorithms 2 and 3 describe the EDF and EDF/JIT
algorithms.

Best–effort reservations lack the deadline–sensitive component of AR reservations,
so we use a simple FIFO queue to schedule image transfers for these reservations. We
currently assume that image transfers for ARs and best–effort reservations are sched-
uled separately, each having a separate amount of bandwidth they can use exclusively
(this separation can be accomplished easily with bandwidth throttling). We leave the
development of an algorithm combining the deadline–sensitive aspect of EDF and the
best–effort aspect of FIFO, sharing the same bandwidth, for future work.

25

Algorithm 2 EDF scheduling of image transfers

Input: An image transfer imgt (containing duration and deadline), and an existing
image transfer schedule sched. Each entry in sched contains startT ime, duration,
and deadline.

nextStart := sched[0].startT ime

Add imgt to sched

Sort sched by deadline

{Update start times, and verify that the new schedule is feasible}
for all tr in sched do

tr.startT ime := nextStart
endT ime := tr.startT ime + tr.duration
if endT ime > tr.deadline then

Reject schedule
end if
nextStart = endT ime

end for

Algorithm 3 EDF/JIT scheduling of image transfers

Input: An image transfer imgt (containing duration and deadline), and an existing
image transfer schedule sched. Each entry in sched contains startT ime, duration,
and deadline.

Add imgt to sched using EDF algorithm

{Push starting times as close as possible to deadline}
nextFeasibleEndT ime := sched[last].startT ime + sched[last].duration
for all tr in reverse(sched) do

tr.startT ime := earliest(tr.deadline, nextFeasibleEndT ime) − tr.duration
nextFeasibleEndT ime := tr.startT ime

end for

26

Figure 6.2: EDF and EDF/JIT file staging strategies

6.3 Reusing VM images

Adequate VM image staging affects accuracy, by making sure that all preparation
overhead is processed before the virtual workspace’s scheduled start time. We also
wish to improve efficiency by reducing preparation overhead whenever possible. Re-
ducing this overhead allows the scheduler to accept reservations with earlier start
times, and benefits best–effort requests by reducing the time spent waiting for image
transfer to complete.

We accomplish this goal by reusing VM images already deployed on physical
nodes. As described in Section 2.2, factoring deployment–independent configuration
information out of the VM image and into a metadata file allows VM images to be
reusable. In particular, a VM image can be deployed to a physical machine, and used
multiple times by making local copies and binding those copies to potentially different
metadata files. This reusability enables us to keep VM image templates on a physical
node and use them for several different deployments, thus reducing the number of
image transfers.

Our image reuse algorithm requires that each physical node have a certain amount
of disk space reserved for an image pool. This pool will contain image templates, not
bound to any workspace metadata, which can be shared by different deployments. For
this sharing to be possible, VMs do not use the images in the pool directly. Instead,
if the system supports it, VMs will access images using copy–on–write (COW). If

27

COW is not supported, a local copy of the image will be made before the VM starts.
Additionally, each image has an expiration time indicating when the image should be
removed from the pool. Algorithm 4 describes how the image pool is used when an
image has to be transferred to a node.

Algorithm 4 Image reuse

Input: An image img has to be transferred to node N , for a VM v starting at tstart
and ending at tend. Each node has an image pool imgpool. Each entry of imgpool
is identified by an image identifier, and contains an expiration time texpire and a
set of VMs vms that will be using that image.

if image pool in node N does not have a copy of img then
Transfer image i to node n
Add image to image pool, with imgId := i and texpire = tend {This guarantees

that the image will be available for the entire duration of the VM}
else

if tstart 6 imgpool[img].texpire then

{Image img is guaranteed to be in the image pool at time tstart}
Add v to imgpool[img].vms
imgpool[img].texpire := max(imgpool[img].texpire, tend)

else
Transfer and add to pool as described above

end if
end if

When scheduling VWs, the scheduler takes into account the state of the image
pools in each node, and attempts to minimize the number of image transfers by
allocating, whenever possible, VWs to nodes where the required image is already a
part of the image pool. This algorithm also has allows administrators to set a limit on
the size of the image pool, making sure that disk usage by VM images will not grow
without bounds. The tradeoff, of course, is that some VWs might be rejected since
the required VM image is not available in the image pool and cannot be transferred
because it would make the image pool too large.

6.3.1 Avoiding redundant transfers

As an additional optimization to our image reuse algorithm, image transfers are also
scheduled in such a way that redundant transfers are avoided. We avoid two types of
redundant transfers:

Transfers for ARs: Given a VW starting at time tstart and ending at time tend,
requiring image I, assigned to node N . If there is an image transfer of I

28

Figure 6.3: Avoiding redundant transfers

29

scheduled to N , with deadline less than or equal to tstart, then we reuse that
transfer.

For example, assume that a transfer for image A has been scheduled to arrive
on node N1 at time t1start. This image will be used by V W1 (ending at t1end).
At some point before tstart, a request for V W2 arrives, also requiring image A,
starting at t2start (where t2start > t1end) and ending at time t2end. The scheduler
determines that V W2 should be assigned to node N1. Scheduling an additional
transfer would be redundant, since there is already a transfer for A scheduled
for that node. So, the existing transfer is tagged as carrying an image to be
shared by V M1 and V M2. One the transfer is completed, the image’s timeout
in the pool will be t2start (or, more generally, max(t1end, t2end))

Transfers for best–effort reservations: Given a VW requested at time tsubmit
and requiring image I, the earliest starting time for that VW will depend on
the FIFO transfer queue. More precisely, the scheduler will have to append a
transfer to the FIFO transfer queue, ending at time tlast−transfer−end. If there
are enough resources at that time, the earliest starting time for the VW will
be tlast−transfer−end. The scheduler can also check if existing transfers in the
FIFO queue could be reused: In particular, the scheduler will look for transfers,
each with end time ttransfer−end and destination node N , such that the image
being transferred is image I. If there is any transfers such that there are enough
resources at time ttransfer−end on node N , to run the VW, the earliest such
transfer is reused.

For example, as shown in Figure 6.3 (top), assume that the last image trans-
fer scheduled on the FIFO queue for best–effort reservations carries image A
to node N1, set to arrive at time tstart to be used by V M1. Also, assume
that the time to transfer image A is tA. Now, a request for a new best–effort
reservation arrives for V M2, also requiring image A. If we scheduled a separate
image transfer for V M2, it would start at tstart + tA, despite the availability
of resources at tstart. By allowing the transfer to piggyback on the previously
scheduled transfer, V M2 can start earlier, as show in Figure 6.3 (bottom)

In both cases, the scheduler will take into account existing transfers when mapping
requests to nodes. Assuming availability of resources in the nodes, it is preferable to
schedule a VW to a node with a reusable image transfer than scheduling it to a node
where a new image transfer would necessarily have to be scheduled.

SECTION 7
IMPLEMENTATION

We produced two implementations for our experiments:

SGE–based: We add a layer of scripts on top of an existing local resource manager,
Sun Grid Engine [35], or SGE. These scripts take the application–specific infor-
mation of virtual workspaces (the metadata file), and use SGE to schedule not
only the virtual resources, but also the preparation overhead. We chose SGE
precisely because it is easily extensible, and we could add some of our extensions
without having to modify the SGE source code itself.

However, this implementation only implements some of the techniques described
in the previous section, since SGE does not support advance reservations or
suspend/resume. In effect, we are limited to testing best–effort workloads.
We can also experiment with AR workloads, but only to the point of finding a
schedule for a set of image transfers which is already known to be feasible (since
SGE cannot perform this kind of admission control). Furthermore, image reuse
is accomplished through the use of a simple LFU caching algorithm, instead of
the reuse algorithm described in the previous section.

Nonetheless, this implementation is allows us to test our image prestaging and
reuse techniques on physical hardware.

Simulator: We implemented a scheduler that implements all the techniques de-
scribed in the previous section, and simulated backend, in Python. The schedul-
ing information is stored in a relational database, implemented with SQLite [34].

30

SECTION 8
EXPERIMENTS

We present a series of experiments that illustrate the effect of using the scheduling
model and techniques discussed in the previous section. These experiments focus on
evaluating our techniques for managing the overhead of transferring VM images to
the nodes where they are deployed.

Our experiments are divided into three sets:

#1 Accuracy of AR deployments: Investigates effect of scheduling image trans-
fers on accuracy, using AR–only deployments. These experiments were run on
our physical testbed, with our SGE–based implementation. We also ran a simu-
lated experiment to compare disk usage between the EDF and EDF/JIT image
transfer algorithms.

#2 Efficiency in Best–effort deployments: Investigates effect of image reuse in
Best–effort deployments. These experiments were run on our physical testbed,
with our SGE–based implementation.

#3 Mixing Best–effort and AR workloads: Investigates what types of mixed
workloads (Best–effort and AR) stand to benefit from using VMs, by using all
of the techniques discussed in the previous sections. We focus on measuring the
effect that virtualization has on utilization and running time of mixed workloads.
These experiments were run using our simulator.

The physical testbed for experiments #1 and #2 is composed of 10 dual-CPU
Pentium III 500 MHz systems, each with 512 MB of RAM and 9G of local disk.
One node was used as a cluster head node, eight nodes for VM deployment, and the
remaining node as an image repository node, from which the VM images would be
transferred to the worker nodes. Nodes were connected using 100 Mb/s switched
Ethernet.

Virtual machine images were deployed using the SGE scheduler with the exten-
sions described in the previous section, based on traces that we developed for both
the advance reservation (AR) and best–effort cases. For the best–effort cases, we used
real workload traces, while for the AR cases, lacking real AR submission workloads,
we produced artificial traces using a trace generator.

The simulated testbed used for part of experiment #1 and for experiment #3 is
also composed of 10 dual–CPU nodes, each with 1GB of memory, with eight worker
nodes, one head node, and an image repository node. Nodes are connected using a
100 Mb/s switched Ethernet. We do not impose a limit on the local disk in each
node, but keep track of how much disk space is used throughout the experiments.
The simulations were run on the University of Chicago’s Department of Computer
Science’s Condor pool.

31

32

For all our experiments, we assumed that all virtual workspace requests involved
the same amount of CPU% and memory for each virtual node. We allowed at most 2
VMs to be deployed to a single physical node. Since we focus on preparation overhead,
the VW remains idle during its runtime. As described in Section 5, we assume that
the VM generates no network traffic that would share bandwidth with preparation
overhead.

8.1 Accuracy of AR deployments

Our first set of experiments investigates to what extent using information on the rela-
tively manageable overhead of VM scheduling can improve the accuracy of providing
a virtual resource to a deadline-sensitive client. We assume that the client requests
an advance reservation and we calculate accuracy (or “client satisfaction”) as the
ratio of the time the client actually got to the requested time. Lacking any AR traces
or existing AR trace generators, we developed a simple trace generator capable of
generating a large number of requests according to a set of parameters. Since our
SGE–based implementation does not support advance reservations, we then ran an
offline admission control algorithm on those requests to ensure that there exists a
feasible schedule for the submissions in the trace. Each submission represents the
deployment of a virtual cluster configured with the software required to applications
commonly run on the Open Science Grid (OSG), and includes (1) the descriptor of
the image template to use, (2) the number of nodes, (3) the starting time of the
workspace, and (4) its duration. The Xen VM image with OSG worker node support
that we used in this experiment is 600 MB in size [12]. Nonetheless, we do not use any
image reuse strategies in this experiment, as goal is to show that scheduling image
transfers is, by itself, advantageous.

In this experiments we compare the EDF scheduling algorithm described in Sec-
tion 6.3 with non–scheduled file staging strategies. These strategies do not attempt
to fit the image transfer in an optimal or near–optimal place in a schedule, but rather
base the time of the image transfer directly on a fixed event, such as the submission
time of a request or its starting time. The purpose of comparing against these strate-
gies is to show that a scheduled approach not only guarantees accuracy, but it also
better than easier–to–implement näıve strategies. In particular, we compare against
the following (Figure 8.1 summarizes these file staging strategies):

Job–style: The image transfer begins at the same time as the start time for the
virtual resources.

Just In Time (JIT): Assuming the network’s full bandwidth is available for staging
the necessary VM image for a workspace, the scheduler estimates the time
required to transfer the image and starts the transfer before the start time,
allocating just enough time to transfer the image.

33

Figure 8.1: Nave file staging strategies

Aggressive: This strategy attempts to transfer images immediately after the request
has been accepted, regardless of the starting time for the request.

To measure only the effect of image transfer scheduling on accuracy, VM images
are not reused on the physical nodes.

Table 8.1 describes the two traces (I and II) used in this experiment. These two
traces differ in how the starting times of the VWs are distributed throughout the
duration of the experiment. In Trace I, the starting times are distributed uniformly
throughout the trace, while in Trace II the starting times appear only during 100s
windows (each occurring every 900s), simulating VWs that are submitted in a bursty
fashion.

Figure 8.2 shows the results of running Trace I with the different image scheduling
strategies. We see that EDF and JIT achieve 100% client satisfaction in most cases,
followed by Aggressive with most submissions in the 96%-100% range. Since this
trace represents a best-case scenario, where the start times are uniformly distributed
throughout the experiment, even the näıve JIT and Aggressive strategies achieve
good performance.

Figure 8.3 shows results with Trace II. Since JIT allows just enough time to trans-
fer the image, regardless of what other VWs are scheduled, this strategy can result in
multiple image transfers being scheduled during the same period of time (right before
the “window”). As those transfers share available bandwidth, they take longer than
estimated. EDF addressed this problem by assigning priorities to image transfers
and making use of network idle time, resulting in the best performance, with few
non-100% satisfaction instances (and always at the end of a “window”). Aggressive,
on average, also has good performance, but the images with tighter deadlines suffer

34

Table 8.1: Traces used in experiments
Trace I Trace II Trace III Trace IV

Trace
duration

(s)
7200 4700

VW
submissions

36 35 62

Nodes per
VW

2-4
(Uniformly distributed)

2-16
(Derived from original

trace)
Total

images to
deploy

110
(66.0GB)

106
(63.6GB)

114 (86.4GB)

VW
Duration

1800s
Avg=53.0s
StDev=4.24s

Starting
times

Uniformly
Distributed

Clustered in
100s

windows
every 900s

ASAP

Images
used

6 600MB images,
uniformly distributed

See Table 2

35

Figure 8.2: Client Satisfaction (Trace I)

Figure 8.3: Client Satisfaction (Trace II)

36

as the result of having to share bandwidth with other transfers.
EDF is the only approach that schedules a resource slot for the preparation over-

head with the goal of maximizing client satisfaction, while the other strategies näıvely
start the image transfers at fixed times. By scheduling overhead in the same way as
virtual resources, instead of assuming that overhead should be absorbed into the
client’s requested virtual resource, Scheduled achieves the best client satisfaction in
the two submission patterns present in traces I and II.

However, due to the limited disk space in our physical testbed, this setup is
inadequate to observe how well disk usage scales. To do this, we use our simulator,
running a trace of AR requests with the following characteristics:

• All ARs are known at the beginning of the trace.

• Number of nodes per AR: 1–16 (uniformly distributed)

• Number of requests: 94

• Starting times: Uniformly distributed

• Duration of trace: 10h

We compare the EDF and EDF/JIT image staging algorithms, and measure the
peak disk usage in each node at each point in the experiment. Figure 8.4 shows
how EDF results in a high disk usage at the beginning of the experiment (as high
as 31.2GB), since this algorithm will aggressively stage all the images to all the
nodes as soon as possible. EDF/JIT, on the other hand, spreads the images transfers
throughout the experiment, pushing the transfers as close as possible to the starting
times of the reservations. This way, disk usage on any given node never exceeds
2.4GB (four images).

8.2 Efficiency in Best–effort deployments

Our second set of experiments investigate two things: (1) how much bandwidth the
resource provider can save through judicious use of image reuse based on workspace
metadata and (2) to what extent can image reuse improve deployment time (and thus
also client satisfaction) in situations where VM availability is requested to start as
soon as possible.

Since this experiment focuses on best–effort submissions, the same type of sub-
missions commonly found in batch systems, we were able to use a real workload.
In particular, we used the San Diego Supercomputer Center (SDSC) DataStar log,
available at the Parallel Workloads Archive [32]. We chose this workload because
it explicitly distinguishes submissions for the DataStar’s express queue (eight 8-CPU
nodes, accepting jobs lasting at most 2 hr), which allows us to test a scenario in which
minimizing deployment overhead is specially important: short-lasting jobs. Since the

37

Figure 8.4: Disk usage with EDF and EDF/JIT

SDSC DataStar log spans several months, we selected an 80 minute stretch of submis-
sions (submissions #21543 to #21665 on queue #1) for our experiments. We selected
this section because it represents a flurry of short-lasting jobs, which allows us to test
how our system copes with the bandwidth requirements of deploying a large amount
of VM images.

When adapting the trace to our own experiments, each submission was converted
to a virtual cluster submission in which the number of nodes was the number of
requested processors in the original trace, scaled down by four (the express queue
has 64 processors; our testbed has 16), with submission times and VW duration left
unaltered. Each submission was assigned one of six 600 MB images. We produced
two traces, with the only difference being the distribution of images assigned to each
submission. The first trace (Trace III) has images uniformly distributed amongst the
submissions, while in the second trace (Trace IV) two images account for more than
80% of the submissions. The characteristics of theses traces are summarized in Table
1, while the distribution of images is shown in Table 8.2. The rate at which VWs are
submitted is shown in Figure 8.5.

Since these experiments use our SGE–based implementation, we used a 1.8 GB
LFU cache in each node (enough to cache three images) to minimize deployment time
and increase throughput.

Figure 8.6 shows the cumulative number of MB deployed throughout the exper-

38

Table 8.2: Distribution of images in traces III, IV
Trace III Trace IV

Submissions Images Submissions Images
img.1 23% 21% 55% 60%
img.2 18% 15% 27% 25%
img.3 15% 12% 6% 6%
img.4 18% 15% 5% 4%
img.5 24% 14% 3% 3%
img.6 3% 12% 3% 3%

Figure 8.5: VW Submissions (Traces III and IV)

39

Figure 8.6: MB Deployed (Trace III)

Figure 8.7: MB Deployed (Trace IV)

40

iment. This number reflects how fast images are deployed, whether by an image
transfer or reusing an image already cached. So, at a given time, higher values in the
graph are better (i.e., more images have been deployed at that time). At any given
number of MB (y axis), left–most values are better (i.e., that number of MB has
been deployed earlier). We can observe how, after the 2000s mark, the rate at which
images are deployed starts to increase, thanks to the reduced transfer time resulting
from the use of a cache. The difference in effectively deployed MB is greatest at the
3550s mark, where the cached approach results in a 25.2 GB “advantage” over the
non-cached approach. Figure 8.7, shows the same data from running trace IV, where
the distribution of images favors a much larger number of cache hits. Throughput is
slightly better, with a difference of 27.6 GB at that same 3550s mark.

Deployment time, or the time between when deployment starts and the VMs are
ready to run, is also improved. The average deployment time for a single image, when
not using a cache, is 440s for both traces. This time is reduced to 305s and 247s, in
Trace III and IV respectively, when using an image cache.

These two experiments highlight how using the VW metadata to reuse image
templates and avoid redundant transfers benefits both the provider, by offering a
better utilization of resources leading to higher throughput, and the consumer, by
reducing the deployment time of best–effort workspaces.

8.3 Mixing Best–effort and AR workloads

Our third set of experiments measures the effect of using our virtual resource model
on workloads that combine both AR and best–effort requests. In these experiments,
we are interested in observing the time to complete all best–effort requests and the
utilization of physical resources.

We use several artificially–generated traces that mix best–effort requests and ad-
vance reservations. These traces request enough resources such that, even with 100%
utilization throughout the experiment, each would require between 10h and 10.5h
to complete. All ARs are known in advance by the scheduler (i.e., the requests are
processed at the beginning of the trace), with starting times uniformly distributed
throughout the experiment time. Best–effort requests arrive throughout the duration
of the experiment, separated by uniformly separated intervals.

We generate 36 different traces where we vary three parameters:

Proportion of Best–effort/AR requests: This proportion is measured in terms
of total running time requested by each type of request if they were run in se-
quence. For example, a workload with 10 advance reservations, each requesting
two virtual nodes with a duration each of 5 minutes (total duration = 10 · 2 · 5
= 100 minutes), and five best–effort requests, each requiring 10 virtual nodes
with a duration each of 12 minutes (total duration = 5 · 10 · 12 = 300 minutes),
would be a proportion of 25% AR and 75% Best–effort.

41

The purpose of this parameter is to observe the effect an increasing number of
ARs can have on a Best–effort workload. We use the following proportions:

• 25% Best–effort, 75% AR

• 50% Best–effort, 50% AR

• 75% Best–effort, 25% AR

Duration of best–effort requests: A best–effort request will require n virtual nodes,
each running for time t, and scheduled serially (i.e., the nodes do not have to
run in parallel). We explore different durations, to explore the effect on the
backfilling and suspend/resume strategies (as described in Section 6, backfilling
will be less effective in the presence of long–duration requests). We use the
following durations:

• short: Average duration = 5 minutes

• medium: Average duration = 10 minutes

• long: Average duration = 15 minutes

It should be noted that, since we want the total duration of the workload to be
10h, the value of n will be inversely proportional to t. For example, if we reduce
the duration of the best–effort requests, we must also increase the number of
such requests. The actual value of n will be determined by the proportion
of Best–effort and AR requests. So, this parameter also allows us to observe
what happens when the total number of best–effort requests in a trace increases
(which will involve a larger number of image transfers).

AR resource consumption: This parameter controls how many physical resources
are consumed by an AR request. This translates to how many virtual nodes are
requested by an AR (a minimum of 1 and a maximum of 16, in our simulated
testbed with 8 physical nodes, each with a capacity for 2 VMs). We explore the
following values:

• Up to 25% of available physical resources (1–4 nodes)

• 25% to 50% (5–8 nodes)

• 50% to 75% (9–12 nodes)

• 75% to 100% (13–16 nodes)

We currently choose one value from each parameter (e.g., choosing parameter
short results in all best–effort requests having a short duration). This will allow us to
observe the behaviour of our scheduler in the limits of these parameters, and we leave
more elaborate combinations of parameters (e.g.,traces with 25% short requests, 25%
medium requests, and 50% long requests) for future work.

42

Each request in a trace is assigned a VM image out of 37 possible 600MB images
(22.2GB total). The distribution is skewed in such a way that seven images account
for 70% of requests (10% each), and the remaining images account for 30% of requests
(1% each). Since disk usage is one of our concerns, this distribution of images allows
us to verify that our file prefetching and reusage strategies avoid accumulating all 37
images on the nodes. Furthermore, this case is an example of when predeployment of
all the images might not be an acceptable solution (e.g., if we were dealing with 5GB
images, that would mean using 185GB on each physical node),

8.3.1 Performance with predeployed VM images

We start by running the traces in the following two configurations:

No virtualization The time before an AR is backfilled (as described in Section 6),
and there are no images to deploy.

Virtualization, with predeployed images Before an AR, best–effort requests are
suspended and resumed after the AR (as described in Section 6, there are no
images to deploy, and we assume a 10% runtime overhead.

The purpose of comparing these two configurations is to observe what types of
traces benefit the most from using the suspend/resume capabilities of virtual ma-
chines, despite the presence of runtime overhead, and under the assumption that
image predeployment is acceptable. Table 8.3 shows time (in seconds) required to
complete all the best–effort requests. Values in italics denote a case where using VMs
results in better performance (shorter running time).

We can observe the following in the results:

• The most noticeable performance gains occur in the presence of long best–
effort requests. Since the time before an AR cannot be backfilled with shorter
requests, using suspend/resume results in increased performance. In fact, the
gain in performance is enough to overcome the runtime overhead of using VMs.

• On the other hand, the presence of short best-effort requests allows the back-
filling algorithm to achieve good enough performance in the non-VM case. In
most cases, little is gained by using the suspend/resume capabilities of VMs
(not enough to overcome the runtime overhead of VMs).

We are also interested in utilization, which we define as the percent of physical
resources used (not idle) at a given time. In our case, since all requests require
the same amount of CPU and memory, allowing for two VMs to run on the same
machine, measuring CPU and memory would yield the same utilization percentage,
so we simply record the percent of CPUs used at any given time. Table 8.4 compares
both configurations again, this time from the point of view of utilization. In particular,

43

Table 8.3: Effect of virtualization (assuming predeployed images) on time to complete
best–effort requests
(1) No virtualization (time in seconds) (2) Virtualization, with predeployed images

(time in seconds)

Duration AR resources Batch-AR (1) (2)
(2)
(1)

long 000-025 25-75 38880 39000 0.309%
long 000-025 50-50 41160 41880 1.749%
long 000-025 75-25 41160 43500 5.685%
long 025-050 25-75 38400 37200 -3.125%
long 025-050 50-50 41820 39360 -5.882%
long 025-050 75-25 41100 42360 3.066%
long 050-075 25-75 37260 37020 -0.644%
long 050-075 50-50 37320 37500 0.482%
long 050-075 75-25 42060 40080 -4.708%
long 075-100 25-75 38700 37020 -4.341%
long 075-100 50-50 41160 37260 -9.475%
long 075-100 75-25 45780 42180 -7.864%

medium 000-025 25-75 38700 39060 0.930%
medium 000-025 50-50 40800 42900 5.147%
medium 000-025 75-25 40140 43140 7.474%
medium 025-050 25-75 36840 36960 0.326%
medium 025-050 50-50 37200 37020 -0.484%
medium 025-050 75-25 41220 42780 3.785%
medium 050-075 25-75 33420 33780 1.077%
medium 050-075 50-50 37260 36780 -1.288%
medium 050-075 75-25 40800 41520 1.765%
medium 075-100 25-75 37380 36600 -2.087%
medium 075-100 50-50 38640 37860 -2.019%
medium 075-100 75-25 40800 40860 0.147%
short 000-025 25-75 36120 38700 7.143%
short 000-025 50-50 40860 43260 5.874%
short 000-025 75-25 41820 45240 8.178%
short 025-050 25-75 36600 36540 -0.164%
short 025-050 50-50 40380 41340 2.377%
short 025-050 75-25 41160 43140 4.810%
short 050-075 25-75 30960 31020 0.194%
short 050-075 50-50 36900 37200 0.813%
short 050-075 75-25 39180 40980 4.594%
short 075-100 25-75 36600 36600 0.000%
short 075-100 50-50 37740 37560 -0.477%
short 075-100 75-25 41040 42840 4.386%

44

the value shown is the average utilization throughout the experiment. This value is
computed by taking all the points during the experiment during which there was
a change in utilization, and taking the average of the utilization at those points
(each value has a weight proportional to the length of the interval during which that
particular utilization was observed). Since the 10% runtime overhead biases this
result towards a higher average utilization (since resources are used for a longer time)
the table makes a comparison assuming no runtime overhead.

8.3.2 Performance when VM images must be transferred

The above predeployment results allow us to observe the effects of using suspend/resume
without worrying about how preparation overhead factors into the results. Now we
analyze what happens when VM images are not predeployed and must be transferred
to the physical nodes before the VM can start. We compare the following configura-
tions:

No virtualization. Same as above.

Virtualization, with predeployed images. Same as above.

Virtualization, with prefetching but no reuse. Before an AR, best–effort re-
quests are suspended and resumed after the AR, images are deployed using
EDF/JIT for ARs, and FIFO for best–effort requests (as described in Sec-
tion 6.2), and we assume a 10% runtime overhead.

Virtualization, with prefetching and reuse. Same as previous, but using the
image reuse algorithm described in Section 6

Table 8.5 shows the time to run all best–effort requests in the two virtualized
configurations without predeployment, and compares them against the virtualized
configuration with predeployment. This experiment allows us to see the effect image
prefetching and reuse have, and if they can achieve a performance as good as prede-
ploying images. Values with an asterisk denote a case where image reuse results in a
performance gain of more than 50% compared to not using image reuse.

We can observe that not reusing images can have a considerable impact on perfor-
mance when the workload contains many small requests, nearly doubling the running
time in some cases, due to the large number of images that must be transferred as
part of the workload. In these cases, reusing images results in performance being
considerably closer to that achieved when predeploying images. On the other hand,
the effect of image reuse gets smaller as the number of images to deploy decreases
(with long requests, the difference in performance is only slightly larger that 3% in
the worst case).

Table 8.6 is similar to Table 8.5, but shows the effect on utilization. In this table,
we can observe that utilization is affected in the same way as the running time of the

45

Table 8.4: Effect of virtualization (assuming predeployed images) on utilization
(1) No virtualization (2) Virtualization, with predeployed images

Duration AR resources Batch-AR (1) (2)
(2)
(1)

long 000-025 25-75 0.85 0.85 -0.37%
long 000-025 50-50 0.88 0.92 5.05%
long 000-025 75-25 0.91 0.94 3.15%
long 025-050 25-75 0.75 0.77 2.57%
long 025-050 50-50 0.82 0.92 12.05%
long 025-050 75-25 0.88 0.92 4.26%
long 050-075 25-75 0.62 0.62 0.57%
long 050-075 50-50 0.77 0.77 0.00%
long 050-075 75-25 0.83 0.91 9.35%
long 075-100 25-75 0.63 0.66 4.94%
long 075-100 50-50 0.74 0.84 12.62%
long 075-100 75-25 0.78 0.92 18.29%

medium 000-025 25-75 0.88 0.88 0.62%
medium 000-025 50-50 0.9 0.92 3.03%
medium 000-025 75-25 0.93 0.94 1.98%
medium 025-050 25-75 0.77 0.77 0.00%
medium 025-050 50-50 0.86 0.87 0.73%
medium 025-050 75-25 0.88 0.93 5.20%
medium 050-075 25-75 0.62 0.62 0.00%
medium 050-075 50-50 0.78 0.8 2.98%
medium 050-075 75-25 0.87 0.93 7.25%
medium 075-100 25-75 0.66 0.68 3.18%
medium 075-100 50-50 0.77 0.81 4.71%
medium 075-100 75-25 0.83 0.88 5.42%
short 000-025 25-75 0.87 0.86 -0.45%
short 000-025 50-50 0.89 0.9 1.34%
short 000-025 75-25 0.9 0.91 0.72%
short 025-050 25-75 0.75 0.75 0.16%
short 025-050 50-50 0.89 0.92 3.22%
short 025-050 75-25 0.89 0.91 1.93%
short 050-075 25-75 0.61 0.61 0.00%
short 050-075 50-50 0.79 0.8 0.82%
short 050-075 75-25 0.87 0.89 2.19%
short 075-100 25-75 0.65 0.65 0.00%
short 075-100 50-50 0.83 0.86 3.11%
short 075-100 75-25 0.87 0.91 4.58%

46

Table 8.5: Effect of image prefetching and reuse on time to complete best–effort
requests (compared with image predeployment)
(1) Virtualization, with predeployed images (time in seconds) (2) Virtualization,

with prefetching but no reuse (time in seconds) (3) Virtualization, with prefetching
and reuse (time in seconds)

Duration AR resources Batch-AR (1) (2) (3)
(2)
(1)

(3)
(1)

long 000-025 25-75 39000 39120 39120 0.31% 0.31%
long 000-025 50-50 41880 42180 41760 0.72% -0.29%
long 000-025 75-25 43500 44640 43920 2.62% 0.97%
long 025-050 25-75 37200 37380 37560 0.48% 0.97%
long 025-050 50-50 39360 40080 39420 1.83% 0.15%
long 025-050 75-25 42360 43260 42420 2.13% 0.14%
long 050-075 25-75 37020 37500 37140 1.30% 0.32%
long 050-075 50-50 37500 37680 37620 0.48% 0.32%
long 050-075 75-25 40080 41100 40140 2.55% 0.15%
long 075-100 25-75 37020 37320 37140 0.81% 0.32%
long 075-100 50-50 37260 37620 37440 0.97% 0.48%
long 075-100 75-25 42180 43500 42180 3.13% 0.00%

medium 000-025 25-75 39060 39060 39540 0.00% 1.23%
medium 000-025 50-50 42900 44040 42780 2.66% -0.28%
medium 000-025 75-25 43140 45660 42960 5.84% -0.42%
medium 025-050 25-75 36960 37200 37140 0.65% 0.49%
medium 025-050 50-50 37020 39540 37140 6.81% 0.32%
medium 025-050 75-25 42780 46740 42420 9.26% 0.84%
medium 050-075 25-75 33780 34380 33960 1.78% 0.53%
medium 050-075 50-50 36780 38580 36600 4.89% -0.49%
medium 050-075 75-25 41520 47040 41640 13.30% 0.29%
medium 075-100 25-75 36600 37680 36660 2.95% 0.16%
medium 075-100 50-50 37860 40980 38340 8.24% 1.27%
medium 075-100 75-25 40860 46080 41220 12.78% 0.88%
short 000-025 25-75 38700 40740 38820 5.27% 0.31%
short 000-025 50-50 43260 62580 45420 44.66% 4.99%
short 000-025 75-25 45240 81720 47040 80.64% 3.98% *
short 025-050 25-75 36540 38820 36840 6.24% 0.82%
short 025-050 50-50 41340 64320 42960 55.59% 3.92% *
short 025-050 75-25 43140 78180 46320 81.22% 7.37% *
short 050-075 25-75 31020 32220 32700 3.87% 5.42%
short 050-075 50-50 37200 57840 39900 55.48% 7.26%
short 050-075 75-25 40980 78600 43020 91.80% 4.98% *
short 075-100 25-75 36600 43020 36840 17.54% 0.66%
short 075-100 50-50 37560 64800 38700 72.52% 3.04% *
short 075-100 75-25 42840 84540 44940 97.34% 4.90% *

47

best–effort requests. Table 8.7 compares the virtualized configurations against the
non-virtualized configuration.

Finally, we measured disk usage in all these experiments. When using VMs, with
images prefetched with EDF/JIT, disk usage on the physical nodes never exceeded
3.6GB (six images). When using the reuse algorithm, disk usage was slightly smaller,
peaking at 3.0GB (five images). We also ran the experiments using the EDF image
transfer algorithm and, similarly to the results in the ‘Accuracy of AR deployments’
experiments, disk usage (without reuse) was much higher, peaking at 30GB (50 im-
ages).

In these experimental results, we have shown that our resource model can im-
prove both accuracy and efficiency of virtual workspace deployments. Our first set of
experiments focused solely on advance reservations, and showed that scheduling VM
image transfers separately from the virtual resources themselves allows the scheduler
to have all necessary images deployed before the virtual workspace starts, instead of
having the preparation overhead deducted from the user’s allocation. Our second set
of experiments dealt with best–effort requests, showing that image reuse strategies
can reduce the number of image transfers required for these types of deployments,
allowing requests to be processed sooner and reducing the amount of bandwidth dedi-
cated to image staging. Our final set of experiments observed the effect of our resource
management techniques on mixed workloads (advance reservations and best–effort re-
quests), showing that virtualization can lead to increased performance if VM images
are predeployed. We also showed that, even when predeployment is not possible,the
overhead of deploying the images can be reduced if it is adequately managed.

48

Table 8.6: Effect of image prefetching and reuse on utilization (compared with image
predeployment)
(1) Virtualization, with predeployed images (2) Virtualization, with prefetching but

no reuse (3) Virtualization, with prefetching and reuse

Duration AR resources Batch-AR (1) (2) (3)
(2)
(1)

(3)
(1)

long 000-025 25-75 0.92 0.91 0.91 -0.36% -0.29%
long 000-025 50-50 0.93 0.92 0.93 -0.84% 0.18%
long 000-025 75-25 0.94 0.92 0.93 -2.71% -0.99%
long 025-050 25-75 0.78 0.78 0.78 -0.40% -0.84%
long 025-050 50-50 0.94 0.92 0.93 -1.75% -0.14%
long 025-050 75-25 0.94 0.92 0.94 -2.08% -0.09%
long 050-075 25-75 0.67 0.66 0.66 -1.32% -0.30%
long 050-075 50-50 0.83 0.83 0.83 -0.40% -0.27%
long 050-075 75-25 0.94 0.92 0.94 -2.59% -0.16%
long 075-100 25-75 0.72 0.71 0.71 -0.78% -0.38%
long 075-100 50-50 0.89 0.88 0.89 -0.94% -0.43%
long 075-100 75-25 0.93 0.9 0.93 -3.20% -0.04%

medium 000-025 25-75 0.9 0.9 0.89 0.03% -1.22%
medium 000-025 50-50 0.94 0.91 0.94 -2.63% 0.27%
medium 000-025 75-25 0.95 0.89 0.95 -5.84% 0.32%
medium 025-050 25-75 0.79 0.78 0.79 -0.68% -0.41%
medium 025-050 50-50 0.94 0.88 0.93 -6.70% -0.32%
medium 025-050 75-25 0.93 0.85 0.94 -9.23% 0.84%
medium 050-075 25-75 0.64 0.64 0.64 0.00% 0.00%
medium 050-075 50-50 0.85 0.81 0.85 -4.92% 0.52%
medium 050-075 75-25 0.93 0.83 0.93 -13.16% -0.26%
medium 075-100 25-75 0.73 0.71 0.72 -2.92% -0.22%
medium 075-100 50-50 0.87 0.8 0.86 -8.32% -1.29%
medium 075-100 75-25 0.9 0.8 0.89 -12.64% -0.76%
short 000-025 25-75 0.93 0.88 0.93 -5.30% -0.28%
short 000-025 50-50 0.93 0.64 0.88 -44.55% -4.94%
short 000-025 75-25 0.92 0.51 0.88 -80.67% -3.98%
short 025-050 25-75 0.81 0.76 0.8 -6.35% -0.79%
short 025-050 50-50 0.93 0.6 0.89 -55.60% -4.04%
short 025-050 75-25 0.94 0.52 0.87 -81.13% -7.38%
short 050-075 25-75 0.66 0.66 0.66 0.00% 0.00%
short 050-075 50-50 0.86 0.55 0.8 -55.42% -7.17%
short 050-075 75-25 0.91 0.48 0.87 -91.67% -4.98%
short 075-100 25-75 0.69 0.59 0.68 -17.49% -0.57%
short 075-100 50-50 0.9 0.52 0.88 -72.28% -2.90%
short 075-100 75-25 0.91 0.46 0.87 -97.32% -4.99%

49

Table 8.7: Effect of image prefetching and reuse on time to complete best–effort
requests (compared with no virtualization)
(1) No virtualization (time in seconds) (2) Virtualization, with prefetching but no

reuse (time in seconds) (3) Virtualization, with prefetching and reuse (time in
seconds)

Duration AR resources Batch-AR (1) (2) (3)
(2)
(1)

(3)
(1)

long 000-025 25-75 38880 39120 39120 0.62% 0.62%
long 000-025 50-50 41160 42180 41760 2.48% 1.46%
long 000-025 75-25 41160 44640 43920 8.46% 6.71%
long 025-050 25-75 38400 37380 37560 -2.66% -2.19%
long 025-050 50-50 41820 40080 39420 -4.16% -5.74%
long 025-050 75-25 41100 43260 42420 5.26% 3.21%
long 050-075 25-75 37260 37500 37140 0.64% 0.32%
long 050-075 50-50 37320 37680 37620 0.97% 0.80%
long 050-075 75-25 42060 41100 40140 -2.28% -4.57%
long 075-100 25-75 38700 37320 37140 -3.57% -4.03%
long 075-100 50-50 41160 37620 37440 -8.60% -9.04%
long 075-100 75-25 45780 43500 42180 4.98% 7.86%

medium 000-025 25-75 38700 39060 39540 0.93% 2.17%
medium 000-025 50-50 40800 44040 42780 7.94% 4.85%
medium 000-025 75-25 40140 45660 42960 13.75% 7.03%
medium 025-050 25-75 36840 37200 37140 0.98% 0.81%
medium 025-050 50-50 37200 39540 37140 6.29% -0.16%
medium 025-050 75-25 41220 46740 42420 13.39% 2.91%
medium 050-075 25-75 33420 34380 33960 2.87% 1.62%
medium 050-075 50-50 37260 38580 36600 3.54% -1.77%
medium 050-075 75-25 40800 47040 41640 15.29% 2.06%
medium 075-100 25-75 37380 37680 36660 0.80% -1.93%
medium 075-100 50-50 38640 40980 38340 6.06% -0.78%
medium 075-100 75-25 40800 46080 41220 12.94% 1.03%
short 000-025 25-75 36120 40740 38820 12.79% 7.48%
short 000-025 50-50 40860 62580 45420 53.16% 11.16%
short 000-025 75-25 41820 81720 47040 95.41% 12.48%
short 025-050 25-75 36600 38820 36840 6.07% 0.66%
short 025-050 50-50 40380 64320 42960 59.29% 6.39%
short 025-050 75-25 41160 78180 46320 89.94% 12.54%
short 050-075 25-75 30960 32220 32700 4.07% 5.62%
short 050-075 50-50 36900 57840 39900 56.75% 8.13%
short 050-075 75-25 39180 78600 43020 100.61% 9.80%
short 075-100 25-75 36600 43020 36840 17.54% 0.66%
short 075-100 50-50 37740 64800 38700 71.70% 2.54%
short 075-100 75-25 41040 84540 44940 105.99% 9.50%

SECTION 9
RELATED WORK

Many projects tackle the problem of dynamically overlaying virtual resources on top
of physical resources by using virtualization technologies, and do so with different
resource models. These models generally consider overhead as part of the virtual
resource allocated to the user, or do not manage or attempt to reduce it. A common
assumption in related projects is that all necessary images are already deployed on
the worker nodes. Our requirements for dynamic deployment of AR and ASAP
workspaces make it impossible to make this assumption.

The Shirako system [33] developed within the Cluster-On-Demand project [16, 28]
uses VMs to partition a physical cluster into several virtual clusters. Their interfaces
focus on granting leases on resources to users, which can be redeemed at some point
in the future. However, their overhead management model absorbs it into resources
used for VM deployment and management. As we have shown, this model is not
sufficient for AR-style cases.

The XGE project [5] extends SGE so it will use different VMs for serial batch
requests and for parallel job requests. The motivation for their work is to improve
utilization of a university cluster shared by two user communities with different re-
quirements. By using the suspend/resume capabilities of Xen virtual machines when
combining serial and parallel jobs, the XGE project has achieved improved cluster
utilization when compared against using backfilling and physical hardware. However,
the XGE project assumes two fixed VM images predeployed on all cluster nodes.

The VIOLIN and VioCluster projects [24, 23, 22] allow users to overlay a virtual
cluster over more than one physical cluster, leveraging VM live migration to perform
load balancing between the different clusters. The VioCluster model assumes that
VM images are already deployed on potential hosts, and only a “binary diff” file
(implemented as a small Copy-On-Write file), expressing the particular configuration
of each instance, is transferred at deploy-time. This approach is less flexible than
using image metadata, as COWs can be invalidated by changes in the VM images.
Furthermore, our work focuses on use cases where multiple image templates might be
used in a physical cluster, which makes it impractical to prestage all the templates
on all the nodes.

The Maestro-VC system [18] also explores the benefits of providing a scheduler
with application-specific information that can optimize its decisions and, in fact, also
leverages caches to reduce image transfers. However, Maestro-VC focuses on clusters
with long lifetimes, and their model does not schedule image transfer overhead in a
deadline-sensitive manner, and just assumes that any image staging overhead will be
acceptable given the duration of the virtual cluster. Our work includes short-lived
workspaces that must perform efficiently under our model.

The Virtuoso Project [36] and, in particular, its VSched component [20], is capable
of co-scheduling both interactive and batch workloads on individual machines in a

50

51

deadline-sensitive manner, but does not factor in the overhead of deploying the VMs
to the nodes where they are needed.

The In-VIGO project [1] proposes adding three layers of virtualization over grid
resources to enable the creation of virtual grids. Our work, which relates to their
first layer (creating virtual resources over physical resources), is concerned with finer-
grained allocations and enforcements than in the In-VIGO project. Although some
exploration of cache-based deployment has also been done with VMPlant [19], this
project focuses on batch as opposed to deadline-sensitive cases.

SECTION 10
CONCLUSIONS AND FUTURE WORK

We described a virtual resource model, and a set of scheduling strategies for that
model, based on scenarios that, in our experience, arise frequently in the Grid, and
which can involve best–effort deployments as well as deadline-sensitive deployments.
VM preparation and runtime overhead can be both large and highly variable, factors
that conflict with the deadline-sensitive availability needs of interactive and time-
critical platforms. Thus, our proposed model separates resource use devoted to the
overhead of VM deployment from resources available to the VM itself, enabling us to
schedule overhead resource slots equally with VM slots.

We have shown experimental results that evaluate our resource model from three
different perspectives:

— Accuracy : Our first set of experiments investigated the effect of VM image trans-
fers on accuracy of AR deployments. By providing the scheduler with informa-
tion on the VM image required for each request, thus allowing the preparation
overhead of the image transfer to be scheduled with a deadline–sensitive algo-
rithm (EDF), our system was able to guarantee that VM images were available
before the start time of an AR request. Non–scheduled file staging strategies
resulted in worse accuracy, with the user getting only 55% of the requested time
in the worst case.

— Efficiency : Our second set of experiments show to what extent image reuse,
in best–effort deployments, can improve network bandwidth utilization and la-
tency of requests. By reusing VM images on the physical nodes, less image
transfers are required, which allows the resource provider to use the saved band-
width to process more requests, and reducing the average time to deploy a single
image by as much as 44%.

— Mixing Best–Effort requests and Advance Reservations : Our final set of results
provide some insight into the benefits and drawbacks of using VMs for mixed
workloads, containing both best–effort requests and ARs. We observed that,
by using the suspend/resume capabilities of VMs, the running time of mixed
workloads could be reduced by up to 9.5%, assuming that all necessary VM
images could be predeployed. Even in the worst–case, when our scheduling
techniques could not sufficiently compensate for the runtime overhead of VMs,
the running time was increased by no more that 8.1%. Assuming that prede-
ployment of images is not possible, we observed that preparation overhead can
have a noticeable impact on performance, increasing the running time of the
workload, when compared to running with predeployed images, by as much as
97.34%. This value is observed in an execution trace that requires the deploy-
ment of more VM images than the available network bandwidth could handle.

52

53

However, Using image reuse strategies brings this worst case down to a more
reasonable 4.9% increase in running time. In general, removing the assump-
tion that images could be predeployed, but using image reuse strategies, had
no effect on performance in the best case, and only a 7.3% impact in the worst
case.

From these results we can conclude that using workspace metadata and overhead
scheduling, in accordance with our model, results in improved accuracy and efficiency.
Providing the scheduler with information about the VM images needed by a virtual
workspace can have two benefits. First, the required transfer operations can be sched-
uled in advance, resulting in better adherence to requested availability time. Second,
we can use information about a VM image as defined in the workspace metadata to
optimize the resource usage devoted to VM deployment by reusing VM images and
thus reducing the number of image transfers. Both strategies have benefits for the
resource provider and for the client in workloads requiring a large number of image
transfers, and where predeployment is not a possibility. Furthermore, by reducing
preparation overhead, these strategies also make the deployment of short-lived VMs
more cost-effective. Our results also show that leveraging VM resource management
mechanisms, such as suspend/resume, can result in improved utilization of resources,
specially in the presence of long jobs where it becomes difficult to backfill the time
before a reservation.

10.1 Future work

Our future work on this subject will involve developing models that provide accurate
and fine-grained use of other resources, such as CPU, memory, network bandwidth.
Network bandwidth, in particular, presents interesting questions, since network traffic
affects the CPU usage of Dom0, Xen’s management domain. Therefore, running
network-intensive VMs requires ensuring that Dom0 always has enough CPU share to
provide all the VMs with the network bandwidth they require. Future models must
be able to compute the CPU share required by Dom0 dynamically, under varying
loads, guaranteeing that bandwidth will be available for all the VMs, while Dom0 is
not be strained for resources. Disk usage is another interesting dimension which we
have touched upon in this work, but which requires further exploration to account for
different deployment strategies, multi–partition VMs, and different storage backends.

We will also explore Open Advance Reservations, to support event–driven work-
loads. As described in Section 3, this scenario requires that resources be available
when an event arrives. Even though this event arrives during an agreed-upon period
of time, the exact time of the event is unknown. Our model must allow for resource to
be placed on standby (in preparation for that event) without affecting other virtual
workspaces, or wasting resources that could be used before the event arrives.

On the implementation front, we plan to use real submission traces for our mixed

54

workload (best–effort and advance reservation) experiments, and transition from a
simulated backend to a real backend. We will also explore how to include parts of
our scheduler into the Virtual Workspace Service, and evaluate existing local resource
managers where our scheduling techniques could be integrated.

REFERENCES

[1] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Mat-
sunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu. From virtualized
resources to virtual computing grids: the in-vigo system. Future Gener. Com-
put. Syst., 21(6):896–909, June 2005. http://dx.doi.org/10.1016/j.future.
2003.12.021.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web services agreement specifica-
tion (ws-agreement). https://forge.gridforum.org/projects/graap-wg/.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating systems principles,
pages 164–177, New York, NY, USA, 2003. ACM Press.

[4] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, , and
J. Matthews. Xen and the art of repeated research. In Usenix Tech. Conf.
(Freenix Track), pages 135–144, 2004.

[5] N. Fallenbeck, H.-J. Picht, M. Smith, and B. Freisleben. Xen and the art of
cluster scheduling. First International Workshop on Virtualization Technology
in Distributed Computing (VTDC), 2006.

[6] D. Feitelson. Analyzing the root causes of performance evaluation results. Tech-
nical report, School of Computer Science and Engineering, Hebrew University,
2002.

[7] D. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel job scheduling – a sta-
tus report. 10th Workshop on Job Scheduling Strategies for Parallel Processing,
New-York, NY., 2004.

[8] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes. A case for grid computing
on virtual machines. In ICDCS ’03: Proceedings of the 23rd International Con-
ference on Distributed Computing Systems, Washington, DC, USA, 2003. IEEE
Computer Society.

[9] I. Foster, K. Czajkowski, D. Ferguson, J. Frey, S. Graham, T. Maguire,
D. Snelling, and S. Tuecke. Modeling and managing state in distributed sys-
tems: the role of ogsi and wsrf. Proceedings of the IEEE, 93(3):604–612, 2005.

[10] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infras-
tructure (The Morgan Kaufmann Series in Computer Architecture and Design).
Morgan Kaufmann, November 2003.

55

56

[11] I. T. Foster. Globus toolkit version 4: Software for service-oriented systems. In
H. Jin, D. A. Reed, and W. Jiang, editors, NPC, volume 3779 of Lecture Notes
in Computer Science, pages 2–13. Springer, 2005.

[12] I. T. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayor, and X. Zhang.
Virtual clusters for grid communities. In CCGRID, pages 513–520. IEEE Com-
puter Society, 2006.

[13] T. Freeman and K. Keahey. Virtual workspace appliances. SC06 Booth Presen-
tation, November 2006. http://workspace.globus.org/papers/workspace

appliances sc06 booth.pdf.

[14] T. Freeman, K. Keahey, I. T. Foster, A. Rana, B. Sotomayor, and F. Wuerthwein.
Division of labor: Tools for growing and scaling grids. In A. Dan and W. Lamers-
dorf, editors, ICSOC, volume 4294 of Lecture Notes in Computer Science, pages
40–51. Springer, 2006.

[15] P. H. Hargrove and J. C. Duell. Berkeley lab checkpoint/restart (blcr) for linux
clusters. Journal of Physics: Conference Series, 46:494–499, 2006.

[16] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. G. Yocum. Shar-
ing networked resources with brokered leases. In USENIX Technical Conference,
June 2006.

[17] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual workspaces: Achiev-
ing quality of service and quality of life on the grid. Scientific Programming,
13(4):265–276, 2005.

[18] N. Kiyanclar, G. A. Koenig, and W. Yurcik. Maestro-vc: A paravirtualized
execution environment for secure on-demand cluster computing. In CCGRID
’06: Proceedings of the Sixth IEEE International Symposium on Cluster Com-
puting and the Grid (CCGRID’06), page 28, Washington, DC, USA, 2006. IEEE
Computer Society.

[19] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J. Figueiredo. Vm-
plants: Providing and managing virtual machine execution environments for
grid computing. In SC ’04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 7, Washington, DC, USA, 2004. IEEE Computer Society.

[20] B. Lin and P. A. Dinda. Vsched: Mixing batch and interactive virtual ma-
chines using periodic real-time scheduling. In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 8, Washington, DC, USA, 2005.
IEEE Computer Society.

57

[21] K. Pruhs, J. Sgall, and E. Torng. Handbook of Scheduling: Algorithms, Models,
and Performance Analysis, chapter Online Scheduling. CRC Press, Inc., Boca
Raton, FL, USA, 2004.

[22] P. Ruth, X. Jiang, D. Xu, and S. Goasguen. Virtual distributed environments
in a shared infrastructure. IEEE Computer, 38(5):63–69, 2005.

[23] P. Ruth, P. McGachey, and D. Xu. Viocluster: Virtualization for dynamic com-
putational domains. Proceedings of the IEEE International Conference on Clus-
ter Computing (Cluster’05), 2005.

[24] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen. Autonomic live adap-
tation of virtual computational environments in a multi-domain infrastructure.
pages 5–14, 2006.

[25] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems and
Processes. Morgan Kaufmann, June 2005.

[26] S. Srinivasan, R. Kettimuthu, V. Subrarnani, and P. Sadayappan. Characteriza-
tion of backfilling strategies for parallel job scheduling. icppw, 00:514, 2002.

[27] Bcfg2. http://trac.mcs.anl.gov/projects/bcfg2/.

[28] Cod: Cluster-on-demand project. http://www.cs.duke.edu/nicl/cod/.

[29] The globus toolkit. http://www.globus.org/toolkit/.

[30] Gt4 virtual workspace service. http://workspace.globus.org/.

[31] Pacman. http://www.archlinux.org/pacman/.

[32] Parallel workloads archive. http://www.cs.huji.ac.il/labs/parallel/

workload/.

[33] Shirako (part of cereus project). http://www.cs.duke.edu/nicl/cereus/

shirako.html.

[34] Sqlite. http://www.sqlite.org/.

[35] Sun grid engine. http://gridengine.sunsource.net/.

[36] Virtuoso: Resource management and prediction for distributed computing using
virtual machine. http://virtuoso.cs.northwestern.edu/.

[37] Vmware. http://www.vmware.com/.

