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Abstract

Using virtual machines as a resource provision-
ing mechanism offers multiple benefits, most recently
exploited by “infrastructure-as-a-service” clouds, but
also poses several scheduling challenges. More specifi-
cally, although we can use the suspend/resume/migrate
capability of virtual machines to support advance
reservation of resources efficiently, by using suspen-
sion/resumption as a preemption mechanism, this re-
quires adequately modeling the time and resources con-
sumed by these operations to ensure that preemptions
are completed before the start of a reservation. In this
work we present a model for predicting various run-
time overheads involved in using virtual machines, al-
lowing us to efficiently support advance reservations.
We extend our lease management software, Haizea, to
use this new model in its scheduling decisions, and we
use Haizea with the OpenNebula virtual infrastructure
manager so the scheduling decisions will be enacted in
a Xen cluster. We present both physical and simulated
experimental results showing the degree of accuracy of
our model and the long-term effects of variables in our
model on several workloads.

1 Introduction

Virtual machines (VMs) have become a key technol-
ogy to realize an “infrastructure-as-a-service” (or IaaS)
model where computational capacity, in the form of
virtual machines deployed in a resource provider’s dat-
acenter, is provisioned on-demand as a service. Vir-
tual machines offer multiple benefits, such as the abil-

ity to securely partition physical servers and to pro-
vide users with customized software environments, but
pose the problem of how to efficiently schedule vir-
tual machines on multi-host environments. In previous
joint work with K. Keahey (Argonne National Labo-
ratory) [20,21] we proposed a solution to this problem
that relied on leases as a fundamental resource provi-
sioning abstraction; a lease is “a negotiated and rene-
gotiable agreement between a resource provider and a
resource consumer, where the former agrees to make a
set of resources available to the latter, based on a set of
lease terms presented by the resource consumer.” We
defined lease terms supporting both best-effort leases,
where requests are queued until resources can be al-
located, and advance reservation (AR) leases, where
resources must be available at a specific time. We de-
signed and implemented Haizea,1 a lease management
system that allows users to request a lease for com-
putational resources, which is then scheduled and im-
plemented as a set of VMs. We also showed that, by
leveraging the suspend/resume/migrate capabilities of
VMs, our approach allowed ARs to be supported ef-
ficiently, without the utilization problems commonly
associated with them [5,11,18,19].

Supporting ARs accurately and efficiently, however,
requires an accurate model of the time and resources
consumed by certain VM operations. For example,
starting a set of VMs may require transferring multiple
VM disk images to the physical nodes where the VMs
will run. If those VMs have been scheduled for a lease
starting at a time t, the images must be transferred be-
fore that starting time, or the lease agreement will be
broken. This requires not only estimating the transfer

1http://haizea.cs.uchicago.edu/
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times accurately but also scheduling to meet a dead-
line, possibly in the presence of other image transfers
that have to be completed before other deadlines. Sim-
ilarly, if an AR lease requires preempting other leases,
which can be accomplished by suspending the VMs in
the preempted lease, those suspension operations must
also be scheduled in such a way that they will finish
before the start of the reservation.

Our previous work focused on modeling preparation
overhead, or the actions that must take place before the
start of a lease, such as transferring VM disk images.
However, we used a simple model for the runtime over-
head of suspending and resuming VMs that incorpo-
rated certain assumptions that we knew to be limiting
in practice, such as allowing only a single VM to be de-
ployed per physical server and requiring that memory
state images (resulting from suspensions) be saved to
the local filesystem of the physical node, without allow-
ing for the option of a global filesystem. This made VM
scheduling simpler but did not capture the interactions
that may arise when multiple VMs are scheduled on the
same physical server. Additionally, we did not validate
this model through experiments on physical resources;
all our results were simulation-based. Here, we develop
a more general model and validate this model by con-
ducting a range of experiments. More specifically, our
contributions are the following:

1. A model for predicting the runtime overhead
of suspending and resuming VM-based leases
(with potentially multiple VMs that must be co-
scheduled within the lease) under a variety of con-
ditions, removing many of the assumptions made
in previous work.

2. Experimental results showing the degree of accu-
racy of our model in predicting the runtime over-
head of suspending and resuming leases on a phys-
ical testbed. To run these experiments, we imple-
mented our model in the Haizea lease manager,
which relied on our model’s estimations to sched-
ule VM suspensions and resumptions. Further-
more, we used the OpenNebula2 [10] virtual infras-
tructure manager to run experiments on a physical
testbed.

3. Simulation results showing the long-term effects
of modifying parameters in the model, such as
the amount of memory requested by VMs or the
amount of network bandwidth available.

The remainder of this paper is structured as follows.
Section 2 discusses related work. Section 3 describes

2http://www.opennebula.org/

the design and implementation of our model, including
the formulas to estimate suspension/resumption times
(Section 3.1) and a description of the OpenNebula and
Haizea systems (Section 3.2), and the modifications
that were necessary to support our model. Next, Sec-
tion 4 discusses experimental results testing the degree
of accuracy of our model and the long-term effects of
modifying certain variables in our model. Section 5
presents our conclusions and discusses future work.

2 Related Work

Several research groups have explored the use of
VMs as a mechanism to allocate and manage computa-
tional resources, addressing a variety of issues such as
cluster contextualization [7], rapid deployment [13,23],
job scheduling on virtual clusters [3, 4, 8, 22], VM con-
solidation [2,12], virtual networking and load balancing
between multiple physical clusters [16, 17], and auto-
matic configuration and creation of VMs [1, 9]. How-
ever, all of these focus on meeting the requirements
of a single provisioning scenario (either immediate or
best-effort, but not ARs), except for Walters et al. [22],
who consider workloads combining both batch jobs and
interactive jobs with near-immediate availability re-
quirements. Both Walters et al. and Fallenbeck et
al. [4] leverage the suspend/resume capability of VMs
to improve utilization of physical resources by using
preemption-based scheduling, but the overhead of sus-
pending/resuming is not modeled or explicitly sched-
uled so it will complete before a deadline (e.g., the
start of a reservation). Yamasaki et al. [23] devel-
oped a model for predicting the time to completely
set up a new software environment on potentially het-
erogeneous physical nodes, allowing their scheduler to
choose nodes that minimize the time to set up a new
virtual cluster. Although their model is effective for
rapid deployment of virtual clusters, it does not model
suspension and resumption of VMs. Our lease model
supports both best-effort provisioning and ARs, includ-
ing preempting VMs in favor of an AR, and accordingly
models the overhead of preemption (via suspension and
resumption of VMs) to guarantee that resources are
preempted in time before the start of a reservation.

Several solutions have emerged, both in industry
and academia, to manage virtual infrastructures, al-
lowing dynamic deployment of virtual machines in a
pool of physical servers. Datacenter-based solutions
include commercial products such as VMWare Virtu-
alCenter3 and Platform Orchestrator4 and open-source

3http://www.vmware.com/products/vi/vc/
4http://www.platform.com/Products/

platform-vm-orchestrator
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projects such as Enomalism and Ovirt.5 Amazon EC2,
GoGrid, FlexiScale, and ElasticHosts are examples of
“clouds” that provide infrastructure-as-a-service using
VMs. Eucalyptus [14] and Nimbus [6] are open source
projects that allow existing infrastructure to be trans-
formed into an infrastructure-as-a-service cloud with
EC2-compatible interfaces. However, all these solu-
tions use an immediate provisioning model where VMs
must be allocated right away, or not at all, with no sup-
port for ARs. As such, they do not support resource
preemption and thus have no need to model suspen-
sion/resumption in VMs.

Our work is relevant to use cases where ARs, and
thus the ability to support them efficiently, are desir-
able. Service provisioning clouds, such as the one being
built by the RESERVOIR project6 [15], have require-
ments that cannot be supported with only an immedi-
ate provisioning model, including the need for capac-
ity reservations at specific times to meet service-level
agreements or peak capacity requirements. Addition-
ally, smaller clouds with limited resources, where not
all requests may be satisfiable immediately because of
lack of resources, stand to benefit from more sophisti-
cated VM placement strategies supporting queues, pri-
orities, and ARs.

3 Design and Implementation

In this section, we present our lease suspen-
sion/resumption time model. The development of this
model was an iterative process, where we started with
a basic model, implemented it using Haizea and Open-
Nebula, experimented with it, and refined the model
based on our observations. Although we describe
the stages the model went through, the results pre-
sented later in the paper rely on the final model. We
also briefly describe the Haizea lease manager and the
OpenNebula virtual infrastructure manager, and we
discuss how we implemented our model using them.

3.1 Modeling and Scheduling VM Suspen-
sion/Resumption Times

When scheduling leases, we assume we manage P
identical physical nodes with the ability to instantiate
VMs on them. Each node has C cores, M megabytes of
memory, and D megabytes of local disk storage. When
a VM is suspended on a physical node, it does so at
a rate of s megabytes of VM memory per second. We
define r similarly for VM resumption. Suspending a

5http://ovirt.org/
6http://www.reservoir-fp7.eu/

VM results in a memory state image that can be saved
to either a local filesystem or a global filesystem (f ∈
{local, global}). All nodes are connected by a switched
network. A lease is implemented as a set ofN VMs, one
for each node requested in the lease. We assume that all
VMs have the same resource requirements, described
by a tuple (c,m, d, b), where c is number of CPUs, m
is memory in megabytes, d is disk space in megabytes,
and b is network bandwidth in megabytes per second.

Our first model to estimate suspension/resumption
time, used in our previous work [20], assumed that
C = 1 and f = local. Thus, a lease can be suspended
by suspending all its N VMs in parallel, since each
physical node will have only one VM to suspend, and
each physical node’s local filesystem is independent of
the others. Thus, ts and tr, the time to suspend and re-
sume an entire lease, can be estimated by the following
simple formulas.

ts = m/s (1)

tr = m/r (2)

If we remove the C = 1 assumption, a lease may
have more than one VM in a physical node, and the
above formulas become invalid because we can no
longer assume that all the VMs can be suspended in
parallel. Although each physical node can suspend
VMs independent of what is happening on other nodes,
the time to suspend will now depend on the number
of VMs scheduled on each physical node. Addition-
ally, we observed that suspending or resuming multiple
VMs simultaneously on the same physical node results
in longer and more unpredictable suspension times be-
cause of contention for I/O. Thus, we choose to sched-
ule suspension and resumptions sequentially, so each
has exclusive access to the filesystem. More specifi-
cally, if ni is the number of VMs mapped to physical
node i, then suspending all the VMs in i will require
ni ·ms . If we remove the f = local assumption and allow
memory state files to be saved to a global filesystem, we
can no longer assume that physical nodes can suspend
independently of others. Instead, we need to account
for contention when accessing the shared filesystem.

Thus, the time to suspend an entire lease becomes
the following.

ts =
{

max(n0, n1, . . . , nP ) · ms if f = local
N · ms if f = global

(3)

We can define tr similarly.
Each suspend/resume command sent to physical

nodes will incur a communication overhead. In pre-
liminary experiments we observed that this overhead

3

http://ovirt.org/
http://www.reservoir-fp7.eu/


cannot be assumed away, since OpenNebula sends com-
mands to physical nodes sequentially over TCP. Thus,
even if a command takes only 1–2 seconds to be pro-
cessed, suspending 64 VMs would result in a total over-
head of 64–128 seconds. Thus, if e is the enactment
overhead of sending a suspend/resume command, the
formula becomes the following.

ts = N · e+
{

max(n0, n1, . . . , nP ) · ms if f = local
N · ms if f = global

(4)
Our model also takes into account h, the time to shut

down a VM. When suspending/resuming a lease A to
free resources for another lease B, the end of B is, in
general, followed by the resumption of A. Previously,
we did not model the shutdown time, as we assumed
that resumption could begin as soon as the ending lease
started shutting down (and assumed the cost of shut-
down was negligible). However, we observed in pre-
liminary experiments that allowing B’s shutdown to
overlap with the resumption of A noticeably delayed
the first resumption operations, resulting in a longer tr
than expected. Although modeling h does not affect
the formulas for ts and tr, it is taken into account by
the scheduler.

3.2 Haizea and OpenNebula

Haizea is an open source lease management archi-
tecture supporting advance reservation leases, where
the resources must be available at a specific time;
best-effort leases, where resources are provisioned as
soon as possible and requests are placed on a queue
if necessary; and immediate leases, where resources
are provisioned when requested, or not at all. Haizea
maps leases to VMs, scheduling the deployment over-
head of starting those VMs separately (so it will
not be deducted from the lease’s availability period),
and leveraging backfilling algorithms and the sus-
pend/resume/migrate capability of VMs to schedule
the leases more efficiently. More specifically, best-effort
leases can be preempted by AR leases by suspending
the VMs of the best-effort lease before the start of the
AR, and resuming them after the end of the reserva-
tion.

Haizea originally estimated suspension/resumption
times using formulas (1) and (2), which effectively lim-
ited it to scheduling one VM per physical node. Imple-
menting the model described in the previous section
required more than just updating the formula used
to estimate the time. Since the model requires that
each suspension/resumption have exclusive access to a
filesystem (local or global), Haizea had to be modified

so that these operations were spaced apart in such a
way to guarantee exclusion. Additionally, the sched-
uler had to take into account the shutdown time h of
leases to avoid the shutdown of a VM from overlapping
with the resumption of another VM (e.g., when a lease
was being resumed after the end of an AR lease).

Although Haizea is capable of scheduling leases,
however, it has no way of enacting scheduling deci-
sions. By itself, Haizea can be used only as a scheduling
simulator. To operate on physical hardware resources,
we also integrated Haizea with the OpenNebula vir-
tual infrastructure manager. OpenNebula provides the
functionality needed to deploy, monitor, and control
VMs on a pool of distributed physical resources. The
OpenNebula architecture has been designed to be flex-
ible and modular to allow its integration with differ-
ent hypervisors and third-party components. In par-
ticular, this modular architecture allowed us to use
Haizea as a drop-in replacement for OpenNebula’s de-
fault scheduler, thus allowing Haizea to send its enact-
ment commands to OpenNebula instead of to a simu-
lated testbed.

4 Experimental Results

To evaluate the accuracy and effects of our model we
carried out two sets of experiments on physical hard-
ware and in simulation. The first set of experiments,
carried out on our Xen testbed, focuses on determin-
ing what factors can affect the accuracy of the model,
and showing the effect of underestimating and overes-
timating the values of s and r in practice. The other
set of experiments, carried out by simulating 30 days
of lease requests, shows the long-term effects of differ-
ent parameter values in our model. This section begins
by describing our experimental setup; then each set of
experiments is described.

4.1 Experiment Setup

Our testbed is made up by five SunFire x4150
servers, each with two Intel Xeon QuadCore L5335 2
GHz processors (i.e., 8 cores per server, C = 8) and 8
GB of RAM (M = 8192). All the nodes are connected
with a switched Gigabit Ethernet network. One of the
nodes is used as a head node that hosts a shared NFS
filesystem for all the nodes, while the remaining four
nodes are used to run virtual machines (i.e., P = 4,
with P ·C = 32 cores available to run VMs). The head
node also runs OpenNebula 1.0 and Haizea TP1.2 (the
latest versions at the time of writing this paper), which
manage all the VMs during the experiments. The
testbed is configured to operate with Xen 3.2 or KVM,
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although our current results are based on Xen 3.2. All
virtual machines used in the experiments have 2 GB
disk images on the shared NFS filesystem. When sus-
pending or resuming a virtual machine, OpenNebula
can be instructed to save the file to the NFS filesystem
or to the local filesystem of the node where the virtual
machine is running.

For the first two sets of experiments, we need to
provide Haizea with values for s and r. We determined
these values by suspending and resuming a single vir-
tual machine (with m = 1024) 25 times and measuring
the times vs and vr to suspend and resume that single
VM (these times were extracted by parsing the Xen
logs). When f = local, vs = 15.4 (σ = 0.58) and
vr = 14.12 (σ = 0.67). When f = global, vs = 14.00
(σ = 1.04) and vr = 11.60 (σ = 0.50). We conserva-
tively estimate s to be m

vs+2·σvs
and estimate r simi-

larly. Thus, for f = local, s is 61.86 MB/s and r is
66.27 MB/s; for f = global, s is 63.67 MB/s and r is
81.27 MB/s.

4.2 Experiment #1: Suspending and Re-
suming Leases

In our first experiment, two leases are scheduled
on our hardware: a best-effort lease (Be Lease) ini-
tially scheduled to use all available resources, which
is preempted to free up resources for an AR lease
(Ar Lease), which involves suspending all the VMs in
Be Lease, and then resuming them once Ar Lease
ends. The purpose of this experiment is to measure
how accurately lease suspension and resumption times
are estimated, comparing the value predicted by our
model to the actual times measured on our testbed.
Although these results highlight only how these leases
are scheduled on our testbed, they provide insights into
which factors can have an impact on the accuracy of
the model.

Both leases are requested at the start of the ex-
periment and require all the physical resources on
the testbed. Ar Lease has a duration of 5 min-
utes and must start 15 minutes into the experiment.
Be Lease has a duration of 20 minutes; and since
there are no other leases at the start of the experi-
ment, Be Lease can start immediately (but will be
preempted by Ar Lease when it starts 15 minutes into
the experiment; see Figure 1). In this experiment we
explore the following three parameters:

• c ∈ {1, 2, 4, 8}: The number of VMs per physical
node. Since each lease uses all available resources,
then N , the total number of VMs, will be c · P .

• f ∈ {local, global}: as defined in Section 3.1.

Figure 1. (1) A best-effort lease is scheduled
to use all available nodes. (2) An AR lease
is requested at the time when the best-effort
lease is using the testbed resources, neces-
sitating preempting the best-effort lease. The
best-effort lease is suspended before the AR
and then resumed once the AR ends.

• m ∈ {512, 768, 1024}: as defined in Section 3.1.

This experiment is performed in 22 configurations
(one for each combination of parameters, except those
with c = 8 and m = 1024; since the Xen Dom0 domain
uses 512 MB of memory, we cannot start VMs that
consume a total of 8192 MB), and each configuration
is run five times. In each run, we measure the following
metrics:

• t̃s: The observed time used to suspend Be Lease.
We obtain this time by pinging each VM in the
lease every 2 seconds and recording whether it re-
sponds. We analyze the sequence of responses to
determine how much time the lease took to sus-
pend.

• as: The accuracy of suspension, or how close the
observed time to suspend was to the predicted
time. Thus, we define as as t̃s

ts
. A value of 1.0

indicates perfect accuracy. Values less than 1.0
indicate the time was overestimated, meaning that
the VMs in the lease finished suspending earlier
than the time predicted by the model; overesti-
mation has the effect of leaving resources idle be-
tween the end of the suspension and the start of
the AR. Values larger than 1.0 indicate the time
was underestimated, meaning the lease took longer
to suspend than estimated; underestimation has
the effect of delaying the start of the AR.

5



Figure 2. Experiment #1: Observed time to
suspend and resume an entire lease (top)
and accuracy of estimation (bottom)

• ṽs: The observed time used to suspend a single
VM in Be Lease. We parse the Xen log files to
determine this time.

• t̃r, ar, ṽr: Defined similarly for resumption.

Figure 2 shows the average values for t̃s, t̃r, as, and
ar in each experiment configuration. The averages are
taken from the five runs of each configuration. The
standard deviation is not shown in the graphs but is
at most 13.9% of the average (with most values be-
low 10%). These graphs show that, as expected, the
time to suspend and resume increases with the amount
of memory requested, with the rate of increase being
more pronounced when f = global. The observed times
show that the model tends to overestimate the time to
suspend, with only six configurations having an accu-
racy larger that 1.0 (overestimation), with a maximum
value of 1.39 (i.e., the lease took 39% longer to suspend
than estimated). On the other hand, resumption times
are all underestimated, with all accuracies above 1.0
and a maximum value of 1.64.

The explanation for these values can be found by
looking at how individual VMs behave when suspend-
ing and resuming. Figures 3a and 3b show the distribu-

tion of values for ṽs and ṽr, respectively. We see that
values ṽs show little dispersion. However, the graph
does not show 19 outliers (out of 1388 measurements)
with times ranging between 45 seconds and 370 sec-
onds. By inspecting the Xen logs, we found that these
are caused by suspensions that, for no apparent reason,
Xen will block on. In other words, Xen correctly re-
ceives and processes the suspension command, includ-
ing pausing the VM, but does not actually save the
memory state to disk until an arbitrary amount of time
has passed (although it does not block all other opera-
tions; e.g., other suspensions are processed correctly).
We do not know why this situation occurs, and we have
found no mention of it in other work.

On the other hand, the values of ṽr tend to become
more dispersed as c increases. We have found that
the direct cause is resource contention between over-
lapping resumptions. Although the scheduler plans the
resumptions in such a way that they will not overlap
(either globally or locally, depending on f), sometimes
a resumption might take slightly longer than estimated,
affecting the time of the next planned resumption, de-
laying both in the process. We found that the under-
lying cause is the following:

1. The shutdown of Ar Lease can overlap with the
first resumptions. If Ar Lease is still in the pro-
cess of shutting down when the resumptions start,
there will be contention for resources, delaying the
first resumption. In our experiments, we set h to
be a fixed value (15) regardless of the number of
nodes in a lease, and this turned out to be insuffi-
cient when c = 8 (even assuming that a single VM
can be shut down in 1 second, with a 1-second
enactment overhead, that still adds up to 64 sec-
onds).

2. Delays in enactment commands. Occasionally, en-
actment commands sent from OpenNebula (which
uses SSH to send commands) would be delayed by
the SSH server itself, sometimes up to 10 seconds.

3. The larger c is, the greater the likelihood of a cas-
cade effect. For larger values of c, the more likely
it is that a delayed resumption will affect other re-
sumptions, resulting in more dispersed values over-
all. This situation is especially true for the shut-
down overlap, where delaying the first resumption
could delay up to 31 other resumptions thereafter
(when c = 8 and f = global).

As we can see, the above factors can have an im-
pact on the time to suspend and resume leases and
can potentially delay other leases, such as AR leases
that depend on other leases being preempted before

6
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Figure 3. Experiment #1: Distribution of times required to suspend and resume individual VMs, for
all combinations of cores per physical nodes (1, 2, 4, 8), memory used by each VM (1024, 2048, 3076,
4096), and filesystem used (local or global).

they can start. We are currently working on minimiz-
ing the impact of these factors by making Haizea more
adaptive, by reacting to suspensions and resumptions
that take longer than expected, to avoid contention for
resources when these operations take place. We also
plan to improve the way enactment commands are sent
from OpenNebula, by exploring mechanisms that are
not based on SSH (reducing the overhead of each com-
mand) and that can distribute commands to n hosts in
sublinear time.

4.3 Experiment #2: Long-term effects

The previous experiment explored small, self-
contained cases on real hardware to validate the ac-
curacy of our model in predicting and scheduling the
overhead of preempting a lease. However, it reveals
nothing about the long-term implications of using re-
source leases and how changes in the model’s param-
eters can compound over time, particularly those that
affect suspension/resumption times. In this second set
of experiments, we run Haizea in simulation mode to
process 30 days of lease requests.

The workloads we have used are a subset of those
used in a previous Haizea paper [20]. These work-
loads were constructed by taking the first 30 days of
requests from the SDSC Blue Horizon cluster job sub-
mission trace from the Parallel Workloads Archive [24]
and treating each job request as a best-effort lease re-
quest. Next, we interleave with this set of best-effort
requests a set of AR requests, generated according to

three parameters. Here, ρ is the aggregate duration
of all AR leases in a trace, computed as a percentage
of the total CPU-hours in the simulation’s run, which
is the number of nodes multiplied by the time when
the last best-effort request is submitted; δ is the av-
erage duration of each AR lease; and ν is the number
of nodes requested by each lease. The interlease ar-
rival interval is derived from the values for ρ, δ, and ν.
Given a value for ρ, since the number of AR CPU-hours
is fixed, smaller values of δ will result in more frequent
requests (since there will be more AR lease requests).

In this paper, ν will always be a random value be-
tween between 25 and 48 (the medium range in our
previous paper), and we use only three combinations
of the other two parameters:

• T10: ρ = 10%, δ =3 hours

• T20: ρ = 20%, δ =2 hours

• T30: ρ = 30%, δ =1 hour

These three workloads were chosen because they test
two extremes of ARs. Given that, according to the Par-
allel Workloads Archive the SDSC Blue Horizon trace’s
utilization is 76.2%, T10 introduces a relatively small
amount of ARs, with more time between each reserva-
tion, whereas T30 introduces a large amount of ARs.
T20 is meant as an intermediate point between the
two. We limit our discussion to these three workloads
because the effect of varying ρ, δ, and ν was already
explored in our previous paper, and the focus of this
experiment is on the effect of other parameters.
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The simulated cluster in our experiment is mod-
eled after the SDSC Blue Horizon cluster. However,
whereas our previous paper assumed a single processor
per physical node (C = 1) and that memory state files
are saved to a local filesystem (f = local), here we al-
low C to equal 1, 2, 4, or 8 (and vary P accordingly so
the total number of cores in the cluster is 144). We also
allow memory state files to be saved to a global filesys-
tem. Furthermore, we assume the values for s and r are
the same as the ones in our testbed (indicated in Sec-
tion 4.1). Moreover, we assume that VM disk images
do not need to be deployed before the start of a lease
(e.g., because they are on a global filesystem or are
predeployed to the local filesystems; this corresponds
to configuration VM–PREDEPLOY in our previous pa-
per).

In sum, the parameters in this experiment are the
following:

• trace ∈ {No ARs,T10,T20,T30}

• C ∈ {1, 2, 4, 8} (number of cores per physical
node)

• f ∈ {local, global}

• m ∈ {1024, 2048, 3076, 4096}

In this experiment, we explore all 128 combinations
of these four parameters. In each run, we record for
each lease the following values: the arrival time, or
time when the lease request is submitted (ta), the time
at which the lease starts (tb), and the time the lease
ends (te). We define the all-best-effort metric as the
time when the last best-effort lease is completed, or
max(te). For a given workload, this value is normalized
by presenting the relative difference between this time
and the time required to process the same workload
under the assumption that suspension and resumption
can be done instantaneously (e.g., a value of 1.1 in-
dicates that processing the entire workload took 10%
longer than if we could suspend and resume virtual
machines instantaneously).

Figure 4 shows the values of all-best-effort for each
combination of the experiment parameters. We see
that when using traces T10 and T20, the effect of all pa-
rameters on the running time of the best-effort leases is
relatively small, with all-best-effort being at most 1.018.
However, with trace T30, where preemptions are more
likely to happen, the effect is more noticeable, espe-
cially when using a global filesystem, with values of
all-best-effort up to 1.10 (for this 30-day workload, this
translates to 3.37 extra days of work relative to the
baseline).

Table 1. Experiment #3: Effect of modifying
the bandwidth

Workload 1000 Mbps 100 Mbps Difference
No ARs 0.99 1.00 +0.1%

T10 0.99 1.00 +0.7%
T20 1.00 1.05 +5.1%
T30 1.04 1.16 +11.1%

Another parameter that may affect performance is
the network bandwidth, which directly affects s and r
when f = global. Fixing C = 1 and m = 1024, we
reran the simulations assuming a 100 Mbps Ethernet
network. Since we do not have a 100 Mbps network
in our testbed with which to determine the values of s
and r, we assume that they will be one-tenth of what
they are in our 1000 Mbps network (i.e., s = 6.367
MB/s, and r is 8.127 MB/s). Table 1 summarizes the
results of these simulations. As we can see, the effect
on all-best-effort is still small with workload T10 but
more noticeable when using workloads T20 and T30.

5 Conclusions

We have described a model for estimating the time
required to suspend and resume a resource lease imple-
mented with virtual machines. Such a model is neces-
sary to accurately and efficiently support VM-based re-
source lease preemption, where a given lease may need
to start at a specific time, requiring other leases to be
preempted to free up resources. In order to guarantee
that those resources are freed up on time, the time to
suspend the VMs must be accurately estimated.

Through our experiments, we have shown that while
our model underestimates suspension times in only a
few cases (which would delay the start of an AR), it
also tends to overestimate suspension times, resulting
in idle times between the end of the suspension and
the start of the AR. Moreover, our model tends to
underestimate resumption times. However, we found
that these inaccurate estimations were due to specific
factors — overlapping of shutdowns and resumptions,
delays in enactment commands, and cascade effects —
highlighting how an incomplete model can have a sig-
nificant impact, not just on lease resumption times,
but also on the rest of the schedule. In the short term,
we will work on refining our model and minimizing the
impact of these factors. In particular, we are focusing
on making Haizea more adaptive to unexpected events,
such as suspensions/resumptions that take longer than
expected (e.g., because of a delay in an enactment com-
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Figure 4. Experiment #3: Values of the all-best-effort metric for all the combinations of workloads (No
ARs,T10,T20,T30), cores per physical nodes (1, 2, 4, 8), memory used by each VM (1024, 2048, 3076,
4096), and filesystem used (local or global).

mand), to avoid contention for resources when these
operations take place. Additionally, in this paper we
explored only one model, along with fixed values for s
and r; we plan to explore different estimation models
and variable values of s and r, showing their effect on
the probability that ARs will be delayed (instead of
presenting only the degree of accuracy of the estima-
tions). In our simulation experiments, we have shown
that varying some of the parameters in our model has
relatively small long-term effects on performance, as
measured by the all-best-effort metric, except when us-
ing workloads with a large amount of ARs, which re-
sults in a larger number of lease preemptions (in our
case, the T30 required that 30% of resources be de-
voted to ARs, while the best-effort requests required
76.2% of resources). However, we still need to analyze
the long-term effects on other metrics, such as waiting
times and slowdowns in best-effort requests.

Besides addressing the issues identified above, we
will extend the model to cover more cases. In partic-
ular, we are interested in rerunning our experiments
using KVM virtual machines, instead of Xen virtual
machines, to observe whether suspension and resump-
tion times behave the same way or whether additional
factors have to be taken in account.
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